Glasnik Matematicki, Vol. 58, No. 2 (2023), 181-200. \( \)

HIGHER INCIDENCE MATRICES AND TACTICAL DECOMPOSITION MATRICES

Michael Kiermaier and Alfred Wassermann

Department of Mathematics, University of Bayreuth, 95440 Bayreuth, Germany
e-mail:michael.kiermaier@uni-bayreuth.de

Department of Mathematics, University of Bayreuth, 95440 Bayreuth, Germany
e-mail:alfred.wassermann@uni-bayreuth.de


Abstract.   In 1985, Janko and Tran Van Trung published an algorithm for constructing symmetric designs with prescribed automorphisms. This algorithm is based on the equations by Dembowski (1958) for tactical decompositions of point-block incidence matrices. In the sequel, the algorithm has been generalized and improved in many articles. In parallel, higher incidence matrices have been introduced by Wilson in 1982. They have proven useful for obtaining several restrictions on the existence of designs. For example, a short proof of the generalized Fisher's inequality makes use of these incidence matrices. In this paper, we introduce a unified approach to tactical decompositions and incidence matrices. It works for both combinatorial and subspace designs alike. As a result, we obtain a generalized Fisher's inequality for tactical decompositions of combinatorial and subspace designs. Moreover, our approach is explored for the construction of combinatorial and subspace designs of arbitrary strength.

2020 Mathematics Subject Classification.   05B05, 51E05, 52C35

Key words and phrases.   Designs, subspace designs, tactical decomposition


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.58.2.03


References:

  1. T. Beth, D. Jungnickel and H. Lenz, Design theory. Vols. I and II, Cambridge University Press, Cambridge, 1999.
    MathSciNet    CrossRef

  2. A. Beutelspacher, Einführung in die endliche Geometrie. I: Blockpläne, Bibliographisches Institut, Mannheim, 1982.
    MathSciNet

  3. R. E. Block, On the orbits of collineation groups, Math. Z. 96 (1967), 33–49.
    MathSciNet    CrossRef

  4. R. C. Bose, A note on Fisher's inequality for balanced incomplete block designs, Ann. Math. Statistics 20 (1949), 619–620.
    MathSciNet    CrossRef

  5. M. Braun, M. Kiermaier and A. Wassermann, \(q\)-analogs of designs: subspace designs, in: Network coding and subspace designs, Springer, Cham, 2018, 171–211.
    MathSciNet    CrossRef

  6. P. J. Cameron, Generalisation of Fisher's inequality to fields with more than one element, in: Combinatorics, Cambridge University Press, Cambridge, 1974, 9–13.
    MathSciNet    CrossRef

  7. V. Ćepulić, On symmetric block designs \((40, 13, 4)\) with automorphisms of order \(5\), Discrete Math. 128 (1994), 45–60.
    MathSciNet    CrossRef

  8. C. J. Colbourn and J. H. Dinitz, eds., Handbook of combinatorial designs, Chapman & Hall/CRC, Boca Raton, 2007.
    MathSciNet    CrossRef

  9. D. Crnković and S. Rukavina, Construction of block designs admitting an abelian automorphism group, Metrika 62 (2005), 175–183.
    MathSciNet    CrossRef

  10. P. Dembowski, Verallgemeinerungen von Transitivitätsklassen endlicher projektiver Ebenen, Math. Z. 69 (1958), 59–89.
    MathSciNet    CrossRef

  11. P. Dembowski, Finite geometries, Springer-Verlag, Berlin–New York, 1968.
    MathSciNet    CrossRef

  12. Z. Janko and T. V. Trung, Construction of a new symmetric block design for \((78, 22, 6)\) with the help of tactical decompositions, J. Combin. Theory, Ser. A 40 (1985), 451–455.
    MathSciNet    CrossRef

  13. W. M. Kantor, Automorphism groups of designs, Math. Z. 109 (1969), 246–252.
    MathSciNet    CrossRef

  14. M. Kiermaier and R. Laue, Derived and residual subspace designs, Adv. Math. Commun. 9 (2015), 105–115.
    MathSciNet    CrossRef

  15. M. Kiermaier and M. O. Pavčević, Intersection numbers for subspace designs, J. Combin. Des. 23 (2015), 463–480.
    MathSciNet    CrossRef

  16. E. S. Kramer and D. M. Mesner, \(t\)-designs on hypergraphs, Discrete Math. 15 (1976), 263–296.
    MathSciNet    CrossRef

  17. V. Krčadinac, A. Nakić and M. O. Pavčević, The Kramer-Mesner method with tactical decompositions: some new unitals on \(65\) points, J. Combin. Des. 19 (2011), 290–303.
    MathSciNet    CrossRef

  18. V. Krčadinac, A. Nakić and M. O. Pavčević, Equations for coefficients of tactical decomposition matrices for \(t\)-designs, Des. Codes Cryptogr. 72 (2014), 465–469.
    MathSciNet    CrossRef

  19. A. Nakić and M. O. Pavčević, Tactical decompositions of designs over finite fields, Des. Codes Cryptogr. 77 (2015), 49–60.
    MathSciNet    CrossRef

  20. A. Nakić, Non-existence of a simple \(3\)-\((16, 7, 5)\) design with an automorphism of order \(3\), Discrete Math. 338 (2015), 555–565.
    MathSciNet    CrossRef

  21. D. K. Ray-Chaudhuri and R. M. Wilson, On \(t\)-designs, Osaka J. Math. 12 (1975), 737–744.
    MathSciNet    Link

  22. H. Suzuki, On the inequalities of \(t\)-designs over a finite field, European J. Combin. 11 (1990), 601–607.
    MathSciNet    CrossRef

  23. A. Wassermann, Search for combinatorial objects using lattice algorithms—revisited, in: Combinatorial algorithms, Springer International Publishing, Cham, 2021, 20–33.
    MathSciNet    CrossRef

  24. R. M. Wilson, Incidence matrices of \(t\)-designs, Linear Algebra Appl. 46 (1982), 73–82.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page