Glasnik Matematicki, Vol. 58, No. 2 (2023), 167-179. \( \)

BLOCK DESIGNS FROM SELF-DUAL CODES OBTAINED FROM PALEY DESIGNS AND PALEY GRAPHS

Dean Crnković, Ana Grbac and Andrea Švob

Faculty of Mathematics, University of Rijeka, 51000 Rijeka, Croatia
e-mail:deanc@math.uniri.hr

Faculty of Mathematics, University of Rijeka, 51000 Rijeka, Croatia
e-mail:abaric@math.uniri.hr

Faculty of Mathematics, University of Rijeka, 51000 Rijeka, Croatia
e-mail:asvob@math.uniri.hr


Abstract.   In 2002, P. Gaborit introduced two constructions of self-dual codes using quadratic residues, so-called pure and bordered construction, as a generalization of the Pless symmetry codes. In this paper, we further study conditions under which the pure and the bordered construction using Paley designs and Paley graphs yield self-dual codes. Special attention is given to the binary and ternary codes. Further, we construct \(t\)-designs from supports of the codewords of a particular weight in the binary and ternary codes obtained.

2020 Mathematics Subject Classification.   05B05, 05E30, 94B05.

Key words and phrases.   Paley design, Paley graph, self-dual code, block design.


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.58.2.02


References:

  1. J. E. F. Assmus and J. H. F. Mattson, New \(5\)-designs, J. Combinatorial Theory 6 (1969), 122–151.
    MathSciNet

  2. T. Beth, D. Jungnickel and H. Lenz, Design theory. Vol. I, Cambridge University Press, Cambridge, 1999.
    CrossRef    MathSciNet

  3. A. Bonnecaze and P. Solé, The extended binary quadratic residue code of length 42 holds a 3-design, J. Combin. Des. 29 (2021), 528–532.
    CrossRef    MathSciNet

  4. W. Bosma, J. Cannon, Handbook of Magma functions, Department of Mathematics, University of Sydney, 1994.
    Link

  5. A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin, 1989.
    CrossRef    MathSciNet

  6. A. E. Brouwer and H. Van Maldeghem, Strongly regular graphs, Cambridge University Press, Cambridge, 2022.
    CrossRef    MathSciNet

  7. D. Crnković, A. Grbac and A. Švob, Formally self-dual LCD codes from two-class association schemes, Appl. Algebra Engrg. Comm. Comput. 34 (2023), 183–200.
    CrossRef    MathSciNet

  8. D. Crnković, N. Mostarac and A. Švob, Distance-regular graphs and new block designs obtained from the Mathieu groups, to appear in Appl. Algebra Engrg. Comm. Comput.
    CrossRef

  9. S. T. Dougherty, J.-L. Kim and P. Solé, Double circulant codes from two class association schemes, Adv. Math. Commun. 1 (2007), 45–64.
    CrossRef    MathSciNet

  10. P. Gaborit, Quadratic double circulant codes over fields, J. Combin. Theory Ser. A 97 (2002), 85–107.
    CrossRef    MathSciNet

  11. M. Harada, Self-orthogonal 3-(56,12,65) designs and extremal doubly-even self-dual codes of length 56, Des. Codes Cryptogr. 38 (2006), 5–16.
    CrossRef    MathSciNet

  12. D. G. Higman and C. C. Sims, A simple group of order \(44,352,000\), Math. Z. 105 (1968), 110–113.
    CrossRef    MathSciNet

  13. J. M. Hall and D. Wales, The simple group of order \(604,800\), J. Algebra 9 (1968), 417–450.
    CrossRef    MathSciNet

  14. W. C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge University Press, Cambridge, 2003.
    CrossRef    MathSciNet

  15. Z. Janko, Some new simple groups of finite order. I, in: Symposia mathematica, Vol. 1, Academic Press, London-New York, 1969, 25–64.
    MathSciNet

  16. Z. Janko, Coset enumeration in groups and constructions of symmetric designs, in: Combinatorics '90, North-Holland, Amsterdam, 1992, 275–277.
    CrossRef    MathSciNet

  17. G. B. Khosrovshahi and R. Laue, \(t\)-Designs with \(t\geq 3\), in: Handbook of combinatorial designs, Chapman and Hall/CRC, Boca Raton, 2007, 852–868.

  18. E. S. Kramer and D. M. Mesner, \(t\)-designs on hypergraphs, Discrete Math. 15 (1976), 263–296.
    CrossRef    MathSciNet

  19. V. Pless, On a new family of symmetry codes and related new five-designs, Bull. Amer. Math. Soc. 75 (1969), 1339–1342.
    CrossRef    MathSciNet

  20. V. Pless, Symmetry codes over \({\rm GF}(3)\) and new five-designs, J. Combinatorial Theory Ser. A 12 (1972), 119–142.
    CrossRef    MathSciNet

Glasnik Matematicki Home Page