Glasnik Matematicki, Vol. 58, No. 2 (2023), 167-179. \( \)
BLOCK DESIGNS FROM SELF-DUAL CODES OBTAINED FROM PALEY DESIGNS AND PALEY GRAPHS
Dean Crnković, Ana Grbac and Andrea Švob
Faculty of Mathematics, University of Rijeka, 51000 Rijeka, Croatia
e-mail:deanc@math.uniri.hr
Faculty of Mathematics, University of Rijeka, 51000 Rijeka, Croatia
e-mail:abaric@math.uniri.hr
Faculty of Mathematics, University of Rijeka, 51000 Rijeka, Croatia
e-mail:asvob@math.uniri.hr
Abstract.
In 2002, P. Gaborit introduced two constructions of self-dual codes using quadratic residues, so-called pure and bordered construction, as a generalization of the Pless symmetry codes.
In this paper, we further study conditions under which the pure and the bordered construction using Paley designs and Paley graphs yield self-dual codes.
Special attention is given to the binary and ternary codes.
Further, we construct \(t\)-designs from supports of the codewords of a particular weight in the binary and ternary codes obtained.
2020 Mathematics Subject Classification. 05B05, 05E30, 94B05.
Key words and phrases. Paley design, Paley graph, self-dual code, block design.
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.58.2.02
References:
-
J. E. F. Assmus and J. H. F. Mattson, New \(5\)-designs, J. Combinatorial Theory 6 (1969), 122–151.
MathSciNet
-
T. Beth, D. Jungnickel and H. Lenz, Design theory. Vol. I, Cambridge University Press, Cambridge, 1999.
CrossRef
MathSciNet
-
A. Bonnecaze and P. Solé, The extended binary quadratic residue code of length 42 holds a 3-design, J. Combin. Des. 29 (2021), 528–532.
CrossRef
MathSciNet
-
W. Bosma, J. Cannon, Handbook of Magma functions, Department of Mathematics, University of Sydney, 1994.
Link
-
A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-regular graphs, Springer-Verlag, Berlin, 1989.
CrossRef
MathSciNet
-
A. E. Brouwer and H. Van Maldeghem, Strongly regular graphs, Cambridge University Press, Cambridge, 2022.
CrossRef
MathSciNet
-
D. Crnković, A. Grbac and A. Švob, Formally self-dual LCD codes from two-class association schemes, Appl. Algebra Engrg. Comm. Comput. 34 (2023), 183–200.
CrossRef
MathSciNet
-
D. Crnković, N. Mostarac and A. Švob, Distance-regular graphs and new block designs obtained from the Mathieu groups, to appear in Appl. Algebra Engrg. Comm. Comput.
CrossRef
-
S. T. Dougherty, J.-L. Kim and P. Solé, Double circulant codes from two class association schemes, Adv. Math. Commun. 1 (2007), 45–64.
CrossRef
MathSciNet
-
P. Gaborit, Quadratic double circulant codes over fields, J. Combin. Theory Ser. A 97 (2002), 85–107.
CrossRef
MathSciNet
-
M. Harada, Self-orthogonal 3-(56,12,65) designs and extremal doubly-even self-dual codes of length 56, Des. Codes Cryptogr. 38 (2006), 5–16.
CrossRef
MathSciNet
-
D. G. Higman and C. C. Sims, A simple group of order \(44,352,000\), Math. Z. 105 (1968), 110–113.
CrossRef
MathSciNet
-
J. M. Hall and D. Wales, The simple group of order \(604,800\), J. Algebra 9 (1968), 417–450.
CrossRef
MathSciNet
-
W. C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge University Press, Cambridge, 2003.
CrossRef
MathSciNet
-
Z. Janko, Some new simple groups of finite order. I, in: Symposia mathematica, Vol. 1, Academic Press, London-New York, 1969, 25–64.
MathSciNet
-
Z. Janko, Coset enumeration in groups and constructions of symmetric designs, in: Combinatorics '90, North-Holland, Amsterdam, 1992, 275–277.
CrossRef
MathSciNet
-
G. B. Khosrovshahi and R. Laue, \(t\)-Designs with \(t\geq 3\), in: Handbook of combinatorial designs, Chapman and Hall/CRC, Boca Raton, 2007, 852–868.
-
E. S. Kramer and D. M. Mesner, \(t\)-designs on hypergraphs, Discrete Math. 15 (1976), 263–296.
CrossRef
MathSciNet
-
V. Pless, On a new family of symmetry codes and related new five-designs, Bull. Amer. Math. Soc. 75 (1969), 1339–1342.
CrossRef
MathSciNet
-
V. Pless, Symmetry codes over \({\rm GF}(3)\) and new five-designs, J. Combinatorial Theory Ser. A 12 (1972), 119–142.
CrossRef
MathSciNet
Glasnik Matematicki Home Page