Glasnik Matematicki, Vol. 58, No. 2 (2023), 159-166. \( \)
QUASI-SYMMETRIC \(2\)-\((28,12,11)\) DESIGNS WITH AN AUTOMORPHISM OF ORDER \(5\)
Renata Vlahović Kruc and Vedran Krčadinac
Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
e-mail:renata.vlahovic.kruc@math.hr
Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
e-mail:vedran.krcadinac@math.hr
Abstract.
A design is called quasi-symmetric if it has only two block intersection numbers.
Using a method based on orbit matrices, we classify quasi-symmetric \(2\)-\((28,12,11)\)
designs with intersection numbers \(4\), \(6\), and an automorphism of order \(5\). There
are exactly \(31\,696\) such designs up to isomorphism.
2020 Mathematics Subject Classification. 05B05
Key words and phrases. Quasi-symmetric design, automorphism group, orbit matrices
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.58.2.01
References:
-
T. Beth, D. Jungnickel and H. Lenz, Design theory. Vols. I and II, Cambridge University Press, Cambridge, 1999.
MathSciNet
CrossRef
-
C. Bracken, G. McGuire and H. Ward, New quasi-symmetric designs constructed using mutually orthogonal Latin squares and Hadamard matrices, Des. Codes Cryptogr. 41 (2006), 195–198.
MathSciNet
CrossRef
-
P. Dembowski, Verallgemeinerungen von Transitivitätsklassen endlicher projektiver Ebenen, Math. Z. 69 (1958), 59–89.
MathSciNet
CrossRef
-
Y. Ding, S. Houghten, C. Lam, S. Smith, L. Thiel and V. D. Tonchev, Quasi-symmetric \(2\)-\((28,12,11)\) designs with an automorphism of order \(7\), J. Combin. Des. 6 (1998), 213–223.
MathSciNet
CrossRef
-
Z. Janko, Coset enumeration in groups and constructions of symmetric designs, in: Combinatorics '90, Ann. Discrete Math. 52, North-Holland, Amsterdam, 1992, 275–277.
MathSciNet
CrossRef
-
Z. Janko, On symmetric designs with parameters \((176,50,14)\), J. Combin. Theory Ser. A 72 (1995), 310–314.
MathSciNet
CrossRef
-
Z. Janko, The existence of symmetric designs with parameters \((189,48,12)\), J. Combin. Theory Ser. A 80 (1997), 334–338.
MathSciNet
CrossRef
-
Z. Janko, The existence of symmetric designs with parameters \((105,40,15)\), J. Combin. Des. 7 (1999), 17–19.
MathSciNet
CrossRef
-
Z. Janko and V. D. Tonchev, Cyclic \(2\)-\((91,6,1)\) designs with multiplier automorphisms, Discrete Math. 97 (1991), 265–268.
MathSciNet
CrossRef
-
Z. Janko and V. D. Tonchev, New designs with block size \(7\), J. Combin. Theory Ser. A 83 (1998), 152–157.
MathSciNet
CrossRef
-
Z. Janko and T. V. Tran, On projective planes of order \(12\) which have a subplane of order \(3\). I, J. Combin. Theory Ser. A 29 (1980), 254–256.
MathSciNet
CrossRef
-
Z. Janko and T. V. Tran, On projective planes of order \(12\) with an automorphism of order \(13\). II. Orbit matrices and conclusion, Geom. Dedicata 12 (1982), 87–99.
MathSciNet
CrossRef
-
Z. Janko and T. V. Tran, Projective planes of order \(12\) do not have a four group as a collineation group, J. Combin. Theory Ser. A 32 (1982), 401–404.
MathSciNet
CrossRef
-
Z. Janko and T. V. Tran, The existence of a symmetric block design for \((70,24,8)\), Mitt. Math. Sem. Giessen 165 (1984), 17–18.
MathSciNet
-
Z. Janko and T. V. Tran, Construction of two symmetric block designs for \((71,21,6)\), Discrete Math. 55 (1985), 327–328.
MathSciNet
CrossRef
-
Z. Janko and T. V. Tran, Construction of a new symmetric block design for \((78,22,6)\) with the help of tactical decompositions, J. Combin. Theory Ser. A 40 (1985), 451–455.
MathSciNet
CrossRef
-
Z. Janko and T. V. Tran, A new biplane of order \(9\) with a small automorphism group, J. Combin. Theory Ser. A 42 (1986), 305–309.
MathSciNet
CrossRef
-
D. Jungnickel and V. D. Tonchev, Exponential number of quasi-symmetric SDP designs and codes meeting the Grey-Rankin bound, Designs Codes Cryptogr. 1 (1991), 247–253.
MathSciNet
CrossRef
-
D. Jungnickel and V. D. Tonchev, On symmetric and quasi-symmetric designs with the symmetric difference property and their codes, J. Combin. Theory Ser. A 59 (1992), 40–50.
MathSciNet
CrossRef
-
W. M. Kantor, Symplectic groups, symmetric designs, and line ovals, J. Algebra 33 (1975), 43–58.
MathSciNet
CrossRef
-
E. S. Kramer and D. M. Mesner, \(t\)-designs on hypergraphs, Discrete Math. 15 (1976), 263–296.
MathSciNet
CrossRef
-
V. Krčadinac, Steiner \(2\)-designs \(S(2,4,28)\) with nontrivial automorphisms, Glas. Mat. Ser. III 37(57) (2002), 259–268.
MathSciNet
Link
-
V. Krčadinac and R. Vlahović, New quasi-symmetric designs by the Kramer-Mesner method, Discrete Math. 339 (2016), 2884–2890.
MathSciNet
CrossRef
-
V. Krčadinac and R. Vlahović Kruc, Quasi-symmetric designs on \(56\) points, Adv. Math. Commun. 15 (2021), 633–646.
MathSciNet
CrossRef
-
C. Lam, L. Thiel and V. D. Tonchev, On quasi-symmetric \(2\)-\((28,12,11)\) and \(2\)-\((36,16,12)\) designs, Des. Codes Cryptogr. 5 (1995), 43–55.
MathSciNet
CrossRef
-
T. P. McDonough, V. C. Mavron and H. N. Ward, Amalgams of designs and nets, Bull. Lond. Math. Soc. 41 (2009), 841–852.
MathSciNet
CrossRef
-
B. D. McKay and A. Piperno, Practical graph isomorphism, II, J. Symbolic Comput. 60 (2014), 94–112.
MathSciNet
CrossRef
-
C. Parker, E. Spence and V. D. Tonchev, Designs with the symmetric difference property on \(64\) points and their groups, J. Combin. Theory Ser. A 67 (1994), 23–43.
MathSciNet
CrossRef
-
M. S. Shrikhande, Quasi-symmetric designs, in: Handbook of combinatorial designs, CRC Press, Boca Raton, 2007, 578–582.
MathSciNet
CrossRef
-
M. S. Shrikhande and S. S. Sane, Quasi-symmetric designs, Cambridge University Press, Cambridge, 1991.
MathSciNet
CrossRef
Glasnik Matematicki Home Page