Glasnik Matematicki, Vol. 58, No. 2 (2023), 159-166. \( \)

QUASI-SYMMETRIC \(2\)-\((28,12,11)\) DESIGNS WITH AN AUTOMORPHISM OF ORDER \(5\)

Renata Vlahović Kruc and Vedran Krčadinac

Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
e-mail:renata.vlahovic.kruc@math.hr

Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
e-mail:vedran.krcadinac@math.hr


Abstract.   A design is called quasi-symmetric if it has only two block intersection numbers. Using a method based on orbit matrices, we classify quasi-symmetric \(2\)-\((28,12,11)\) designs with intersection numbers \(4\), \(6\), and an automorphism of order \(5\). There are exactly \(31\,696\) such designs up to isomorphism.

2020 Mathematics Subject Classification.   05B05

Key words and phrases.   Quasi-symmetric design, automorphism group, orbit matrices


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.58.2.01


References:

  1. T. Beth, D. Jungnickel and H. Lenz, Design theory. Vols. I and II, Cambridge University Press, Cambridge, 1999.
    MathSciNet    CrossRef

  2. C. Bracken, G. McGuire and H. Ward, New quasi-symmetric designs constructed using mutually orthogonal Latin squares and Hadamard matrices, Des. Codes Cryptogr. 41 (2006), 195–198.
    MathSciNet    CrossRef

  3. P. Dembowski, Verallgemeinerungen von Transitivitätsklassen endlicher projektiver Ebenen, Math. Z. 69 (1958), 59–89.
    MathSciNet    CrossRef

  4. Y. Ding, S. Houghten, C. Lam, S. Smith, L. Thiel and V. D. Tonchev, Quasi-symmetric \(2\)-\((28,12,11)\) designs with an automorphism of order \(7\), J. Combin. Des. 6 (1998), 213–223.
    MathSciNet    CrossRef

  5. Z. Janko, Coset enumeration in groups and constructions of symmetric designs, in: Combinatorics '90, Ann. Discrete Math. 52, North-Holland, Amsterdam, 1992, 275–277.
    MathSciNet    CrossRef

  6. Z. Janko, On symmetric designs with parameters \((176,50,14)\), J. Combin. Theory Ser. A 72 (1995), 310–314.
    MathSciNet    CrossRef

  7. Z. Janko, The existence of symmetric designs with parameters \((189,48,12)\), J. Combin. Theory Ser. A 80 (1997), 334–338.
    MathSciNet    CrossRef

  8. Z. Janko, The existence of symmetric designs with parameters \((105,40,15)\), J. Combin. Des. 7 (1999), 17–19.
    MathSciNet    CrossRef

  9. Z. Janko and V. D. Tonchev, Cyclic \(2\)-\((91,6,1)\) designs with multiplier automorphisms, Discrete Math. 97 (1991), 265–268.
    MathSciNet    CrossRef

  10. Z. Janko and V. D. Tonchev, New designs with block size \(7\), J. Combin. Theory Ser. A 83 (1998), 152–157.
    MathSciNet    CrossRef

  11. Z. Janko and T. V. Tran, On projective planes of order \(12\) which have a subplane of order \(3\). I, J. Combin. Theory Ser. A 29 (1980), 254–256.
    MathSciNet    CrossRef

  12. Z. Janko and T. V. Tran, On projective planes of order \(12\) with an automorphism of order \(13\). II. Orbit matrices and conclusion, Geom. Dedicata 12 (1982), 87–99.
    MathSciNet    CrossRef

  13. Z. Janko and T. V. Tran, Projective planes of order \(12\) do not have a four group as a collineation group, J. Combin. Theory Ser. A 32 (1982), 401–404.
    MathSciNet    CrossRef

  14. Z. Janko and T. V. Tran, The existence of a symmetric block design for \((70,24,8)\), Mitt. Math. Sem. Giessen 165 (1984), 17–18.
    MathSciNet

  15. Z. Janko and T. V. Tran, Construction of two symmetric block designs for \((71,21,6)\), Discrete Math. 55 (1985), 327–328.
    MathSciNet    CrossRef

  16. Z. Janko and T. V. Tran, Construction of a new symmetric block design for \((78,22,6)\) with the help of tactical decompositions, J. Combin. Theory Ser. A 40 (1985), 451–455.
    MathSciNet    CrossRef

  17. Z. Janko and T. V. Tran, A new biplane of order \(9\) with a small automorphism group, J. Combin. Theory Ser. A 42 (1986), 305–309.
    MathSciNet    CrossRef

  18. D. Jungnickel and V. D. Tonchev, Exponential number of quasi-symmetric SDP designs and codes meeting the Grey-Rankin bound, Designs Codes Cryptogr. 1 (1991), 247–253.
    MathSciNet    CrossRef

  19. D. Jungnickel and V. D. Tonchev, On symmetric and quasi-symmetric designs with the symmetric difference property and their codes, J. Combin. Theory Ser. A 59 (1992), 40–50.
    MathSciNet    CrossRef

  20. W. M. Kantor, Symplectic groups, symmetric designs, and line ovals, J. Algebra 33 (1975), 43–58.
    MathSciNet    CrossRef

  21. E. S. Kramer and D. M. Mesner, \(t\)-designs on hypergraphs, Discrete Math. 15 (1976), 263–296.
    MathSciNet    CrossRef

  22. V. Krčadinac, Steiner \(2\)-designs \(S(2,4,28)\) with nontrivial automorphisms, Glas. Mat. Ser. III 37(57) (2002), 259–268.
    MathSciNet    Link

  23. V. Krčadinac and R. Vlahović, New quasi-symmetric designs by the Kramer-Mesner method, Discrete Math. 339 (2016), 2884–2890.
    MathSciNet    CrossRef

  24. V. Krčadinac and R. Vlahović Kruc, Quasi-symmetric designs on \(56\) points, Adv. Math. Commun. 15 (2021), 633–646.
    MathSciNet    CrossRef

  25. C. Lam, L. Thiel and V. D. Tonchev, On quasi-symmetric \(2\)-\((28,12,11)\) and \(2\)-\((36,16,12)\) designs, Des. Codes Cryptogr. 5 (1995), 43–55.
    MathSciNet    CrossRef

  26. T. P. McDonough, V. C. Mavron and H. N. Ward, Amalgams of designs and nets, Bull. Lond. Math. Soc. 41 (2009), 841–852.
    MathSciNet    CrossRef

  27. B. D. McKay and A. Piperno, Practical graph isomorphism, II, J. Symbolic Comput. 60 (2014), 94–112.
    MathSciNet    CrossRef

  28. C. Parker, E. Spence and V. D. Tonchev, Designs with the symmetric difference property on \(64\) points and their groups, J. Combin. Theory Ser. A 67 (1994), 23–43.
    MathSciNet    CrossRef

  29. M. S. Shrikhande, Quasi-symmetric designs, in: Handbook of combinatorial designs, CRC Press, Boca Raton, 2007, 578–582.
    MathSciNet    CrossRef

  30. M. S. Shrikhande and S. S. Sane, Quasi-symmetric designs, Cambridge University Press, Cambridge, 1991.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page