Glasnik Matematicki, Vol. 58, No. 1 (2023), 125-134. \( \)

BIG FLIP GRAPHS AND THEIR AUTOMORPHISM GROUPS

Assaf Bar-Natan, Advay Goel, Brendan Halstead, Paul Hamrick, Sumedh Shenoy and Rishi Verma

Department of Mathematics, Brandeis University, 415 South Street, Waltham, MA 02453, USA
e-mail:assafbarnatan@gmail.com

Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
e-mail:advayg@mit.edu


e-mail:brendanhalstead23@gmail.com

UNC Chapel Hill
e-mail:hamri@unc.edu

Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
e-mail:sshenoy@mit.edu

Stanford University
e-mail:verma.rishiraj@gmail.com


Abstract.   In this paper, we study the relationship between the mapping class group of an infinite-type surface and the simultaneous flip graph, a variant of the flip graph for infinite-type surfaces defined by Fossas and Parlier [6]. We show that the extended mapping class group is isomorphic to a proper subgroup of the automorphism group of the flip graph, unlike in the finite-type case. This shows that Ivanov's metaconjecture, which states that any “sufficiently rich" object associated to a finite-type surface has the extended mapping class group as its automorphism group, does not extend to simultaneous flip graphs of infinite-type surfaces.

2020 Mathematics Subject Classification.   57M60

Key words and phrases.   Flip graphs, infinite-type surfaces, mapping class groups, Ivanov


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.58.1.09


References:

  1. J. Bavard, S. Dowdall and K. Rafi, Isomorphisms between big mapping class groups, Int. Math. Res. Not. IMRN 2020, 3084–3099.
    MathSciNet    CrossRef

  2. B. C. Branman, Spaces of pants decompositions for surfaces of infinite type, PhD thesis, The University of Wisconsin – Madison, 2022.
    Link    MathSciNet    Link

  3. T. E. Brendle and D. Margalit, Normal subgroups of mapping class groups and the metaconjecture of Ivanov, J. Amer. Math. Soc. 32 (2019), 1009–1070.
    MathSciNet    CrossRef

  4. V. Disarlo and H. Parlier, The geometry of flip graphs and mapping class groups, Trans. Amer. Math. Soc. 372 (2019), 3809–3844.
    MathSciNet    CrossRef

  5. B. Farb and N. V. Ivanov, Torelli buildings and their automorphisms, arXiv: 1410.6223, 2014.
    Link

  6. A. Fossas and H. Parlier, Flip graphs for infinite type surfaces, Groups Geom. Dyn. 16 (2022), 1165–1178.
    MathSciNet    CrossRef

  7. H. Freudenthal, Über die Enden topologischer Räume und Gruppen, Math. Z. 33 (1931), 692–713.
    MathSciNet    CrossRef

  8. J. Hernández Hernández, I. Morales and F. Valdez, Isomorphisms between curve graphs of infinite-type surfaces are geometric, Rocky Mountain J. Math. 48 (2018), 1887–1904.
    MathSciNet    CrossRef

  9. J. Hernández Hernández, I. Morales and F. Valdez, The Alexander method for infinite-type surfaces, Michigan Math. J. 68 (2019), 743–753.
    MathSciNet    CrossRef

  10. E. Irmak and J. D. McCarthy, Injective simplicial maps of the arc complex, Turkish J. Math. 34 (2010), 339–354.
    MathSciNet

  11. N. V. Ivanov, Automorphism of complexes of curves and of Teichmüller spaces, Internat. Math. Res. Notices 1997, 651–666.
    MathSciNet    CrossRef

  12. N. V. Ivanov, Fifteen problems about the mapping class groups, in Problems on mapping class groups and related topics, Amer. Math. Soc., 2006, 71–80.
    MathSciNet    CrossRef

  13. M. Korkmaz and A. Papadopoulos, On the ideal triangulation graph of a punctured surface, Ann. Inst. Fourier (Grenoble) 62 (2012), 1367–1382.
    MathSciNet    Link

  14. K. Mann and K. Rafi, Large scale geometry of big mapping class groups, arXiv: 1912.10914, 2020.
    Link

  15. A. McLeay and H. Parlier, Ideally, all infinite type surfaces can be triangulated, Bull. Lond. Math. Soc. 54 (2022), 2032–2040.
    MathSciNet

Glasnik Matematicki Home Page