Glasnik Matematicki, Vol. 58, No. 1 (2023), 125-134. \( \)
BIG FLIP GRAPHS AND THEIR AUTOMORPHISM GROUPS
Assaf Bar-Natan, Advay Goel, Brendan Halstead, Paul Hamrick, Sumedh Shenoy and Rishi Verma
Department of Mathematics, Brandeis University, 415 South Street, Waltham, MA 02453, USA
e-mail:assafbarnatan@gmail.com
Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
e-mail:advayg@mit.edu
e-mail:brendanhalstead23@gmail.com
UNC Chapel Hill
e-mail:hamri@unc.edu
Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
e-mail:sshenoy@mit.edu
Stanford University
e-mail:verma.rishiraj@gmail.com
Abstract.
In this paper, we study the relationship between the mapping class
group of an infinite-type surface and the simultaneous flip graph,
a variant of the flip graph for infinite-type surfaces defined by
Fossas and Parlier [6]. We show that the extended
mapping class group is isomorphic to a proper subgroup of the
automorphism group of the flip graph, unlike in the finite-type
case. This shows that Ivanov's metaconjecture, which states that
any “sufficiently rich" object associated to a finite-type surface
has the extended mapping class group as its automorphism group, does
not extend to simultaneous flip graphs of infinite-type surfaces.
2020 Mathematics Subject Classification. 57M60
Key words and phrases. Flip graphs, infinite-type surfaces, mapping class groups, Ivanov
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.58.1.09
References:
-
J. Bavard, S. Dowdall and K. Rafi, Isomorphisms between big mapping class groups, Int. Math. Res. Not. IMRN 2020, 3084–3099.
MathSciNet
CrossRef
-
B. C. Branman, Spaces of pants decompositions for surfaces of infinite type, PhD thesis, The University of Wisconsin – Madison, 2022.
Link
MathSciNet
Link
-
T. E. Brendle and D. Margalit, Normal subgroups of mapping class groups and the metaconjecture of Ivanov, J. Amer. Math. Soc. 32 (2019), 1009–1070.
MathSciNet
CrossRef
-
V. Disarlo and H. Parlier, The geometry of flip graphs and mapping class groups, Trans. Amer. Math. Soc. 372 (2019), 3809–3844.
MathSciNet
CrossRef
-
B. Farb and N. V. Ivanov, Torelli buildings and their automorphisms, arXiv: 1410.6223, 2014.
Link
-
A. Fossas and H. Parlier, Flip graphs for infinite type surfaces, Groups Geom. Dyn. 16 (2022), 1165–1178.
MathSciNet
CrossRef
-
H. Freudenthal, Über die Enden topologischer Räume und Gruppen, Math. Z. 33 (1931), 692–713.
MathSciNet
CrossRef
-
J. Hernández Hernández, I. Morales and F. Valdez, Isomorphisms between curve graphs of infinite-type surfaces are geometric, Rocky Mountain J. Math. 48 (2018), 1887–1904.
MathSciNet
CrossRef
-
J. Hernández Hernández, I. Morales and F. Valdez, The Alexander method for infinite-type surfaces, Michigan Math. J. 68 (2019), 743–753.
MathSciNet
CrossRef
-
E. Irmak and J. D. McCarthy, Injective simplicial maps of the arc complex, Turkish J. Math. 34 (2010), 339–354.
MathSciNet
-
N. V. Ivanov, Automorphism of complexes of curves and of Teichmüller spaces, Internat. Math. Res. Notices 1997, 651–666.
MathSciNet
CrossRef
-
N. V. Ivanov, Fifteen problems about the mapping class groups, in Problems on mapping class groups and related topics, Amer. Math. Soc., 2006, 71–80.
MathSciNet
CrossRef
-
M. Korkmaz and A. Papadopoulos, On the ideal triangulation graph of a punctured surface, Ann. Inst. Fourier (Grenoble) 62 (2012), 1367–1382.
MathSciNet
Link
-
K. Mann and K. Rafi, Large scale geometry of big mapping class groups, arXiv: 1912.10914, 2020.
Link
-
A. McLeay and H. Parlier, Ideally, all infinite type surfaces can be triangulated, Bull. Lond. Math. Soc. 54 (2022), 2032–2040.
MathSciNet
Glasnik Matematicki Home Page