Glasnik Matematicki, Vol. 58, No. 1 (2023), 101-124. \( \)
SEMI-PARALLEL HOPF REAL HYPERSURFACES IN THE COMPLEX QUADRIC
Hyunjin Lee and Young Jin Suh
Department of Mathematics Education, Chosun University, Gwangju 61452, Republic of Korea
e-mail:lhjibis@hanmail.net
Department of Mathematics & RIRCM, Kyungpook National University, Daegu 41566, Republic of Korea
e-mail:yjsuh@knu.ac.kr
Abstract.
In this paper, we introduce the new notion of semi-parallel real hypersurface in the complex quadric \(Q^{m}\). Moreover, we give a nonexistence theorem for semi-parallel Hopf real hypersurfaces in the complex quadric \(Q^{m}\) for \(m \geq 3\).
2020 Mathematics Subject Classification. 53C40, 53C55
Key words and phrases. Semi-parallel real hypersurface, semi-symmetric real hypersurface, singular normal vector field, complex structure, real structure, complex quadric
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.58.1.08
References:
-
A. L. Besse, Einstein manifolds. Reprint of the 1987 edition, Springer-Verlag, Berlin, 2008.
MathSciNet
CrossRef
-
J. Berndt and Y. J. Suh, Real hypersurfaces in Hermitian symmetric spaces, De Gruyter, Berlin, 2022.
MathSciNet
CrossRef
-
D. E. Blair, Riemannian geometry of contact and symplectic manifolds. Second edition, Birkhäuser Boston, Ltd., Boston, 2010.
MathSciNet
CrossRef
-
J. Deprez, Semiparallel surfaces in Euclidean space, J. Geom. 25 (1985), 192–200.
MathSciNet
CrossRef
-
J. Deprez, Semiparallel hypersurfaces, Rend. Sem. Mat. Univ. Politec. Torino 44 (1986), 303–316.
MathSciNet
-
F. Dillen, Semi-parallel hypersurfaces of a real space form, Israel J. Math. 75 (1991), 193–202.
MathSciNet
CrossRef
-
S. Helgason, Differential geometry, Lie groups, and symmetric spaces. Corrected reprint of the 1978 original, American Mathematical Society, Providence, 2001.
MathSciNet
CrossRef
-
D. H. Hwang, H. Lee and C. Woo, Semi-parallel symmetric operators for Hopf hypersurfaces in complex two-plane Grassmannians, Monatsh. Math. 177 (2015), 539–550.
MathSciNet
CrossRef
-
S. Klein, Totally geodesic submanifolds of the complex quadric, Differential Geom. Appl. 26 (2008), 79–96.
MathSciNet
CrossRef
-
A. W. Knapp, Lie groups beyond an introduction. Second edition, Birkhäuser Boston, Inc., Boston, 2002.
MathSciNet
CrossRef
-
S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. II. Reprint of the 1969 original, John Wiley & Sons, Inc., New York, 1996.
MathSciNet
-
H. Lee, J. D. Pérez and Y. J. Suh, Derivatives of normal Jacobi operator on real hypersurfaces in the complex quadric, Bull. Lond. Math. Soc. 52 (2020), 1122–1133.
MathSciNet
CrossRef
-
H. Lee and Y. J. Suh, Real hypersurfaces with recurrent normal Jacobi operator in the complex quadric, J. Geom. Phys. 123 (2018), 463–474.
MathSciNet
CrossRef
-
H. Lee and Y. J. Suh, Commuting Jacobi operators on real hypersurfaces of type B in the complex quadric, Math. Phys. Anal. Geom. 23 (2020), Paper No. 44, 21 pp.
MathSciNet
CrossRef
-
H. Lee and Y. J. Suh, A new classification of real hypersurfaces with Reeb parallel structure Jacobi operator in the complex quadric, J. Korean Math. Soc. 58 (2021), 895–920.
MathSciNet
CrossRef
-
T.-H. Loo, Semi-parallel real hypersurfaces in complex two-plane Grassmannians, Differential Geom. Appl. 34 (2014), 87–102.
MathSciNet
CrossRef
-
C. J. G. Machado and J. D. Pérez, Real hypersurfaces in complex two-plane Grassmannians some of whose Jacobi operators are \(\xi\)-invariant, Internat. J. Math. 23 (2012), 1250002, 12 pp.
MathSciNet
CrossRef
-
R. Niebergall and P. J. Ryan, Semi-parallel and semi-symmetric real hypersurfaces in complex space forms, Kyungpook Math. J. 38 (1998), 227–234.
MathSciNet
-
M. Ortega, Classifications of real hypersurfaces in complex space forms by means of curvature conditions, Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 351–360.
MathSciNet
CrossRef
-
J. D. Pérez, On the structure vector field of a real hypersurface in complex quadric, Open Math. 16 (2018), 185–189.
MathSciNet
CrossRef
-
J. D. Pérez, Commutativity of torsion and normal Jacobi operators on real hypersurfaces in the complex quadric, Publ. Math. Debrecen 95 (2019), 157–168.
MathSciNet
CrossRef
-
J. D. Pérez, Some real hypersurfaces in complex and complex hyperbolic quadrics, Bull. Malays. Math. Sci. Soc. 43 (2020), 1709–1718.
MathSciNet
CrossRef
-
J. D. Pérez and Y. J. Suh, Derivatives of the shape operator of real hypersurfaces in the complex quadric, Results Math. 73 (2018), Paper No. 126, 10 pp.
MathSciNet
CrossRef
-
J. D. Pérez and Y. J. Suh, Commutativity of Cho and normal Jacobi operators on real hypersurfaces in the complex quadric, Publ. Math. Debrecen 94 (2019), 359–367.
MathSciNet
CrossRef
-
H. Reckziegel, On the geometry of the complex quadric, in: Geometry and topology of submanifolds. VIII, World Sci. Publ., River Edge, 1996, 302–315.
MathSciNet
-
A. Romero, Some examples of indefinite complete complex Einstein hypersurfaces not locally symmetric, Proc. Amer. Math. Soc. 98 (1986), 283–286.
MathSciNet
CrossRef
-
A. Romero, On a certain class of complex Einstein hypersurfaces in indefinite complex space forms, Math. Z. 192 (1986), 627–635.
MathSciNet
CrossRef
-
B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. (2) 85 (1967), 246–266.
MathSciNet
CrossRef
-
Z. I. Szabó, Structure theorems on Riemannian spaces satisfying \(R(X,Y)\cdot R=0\). I. The local version, J. Differential Geometry 17 (1982), 531–582.
MathSciNet
CrossRef
-
Z. I. Szabó, Structure theorems on Riemannian spaces satisfying \(R(X,Y)\cdot R=0\). II. Global versions, Geom. Dedicata 19 (1985), 65–108.
MathSciNet
CrossRef
-
Y. J. Suh, Real hypersurfaces in the complex quadric with Reeb parallel shape operator, Internat. J. Math. 25 (2014), 1450059, 17 pp.
MathSciNet
CrossRef
-
Y. J. Suh, Real hypersurfaces in the complex quadric with Reeb invariant shape operator, Differential Geom. Appl. 38 (2015), 10–21.
MathSciNet
CrossRef
-
Y. J. Suh, Real hypersurfaces in the complex quadric with parallel Ricci tensor, Adv. Math. 281 (2015), 886–905.
MathSciNet
CrossRef
-
Y. J. Suh, Real hypersurfaces in the complex quadric with harmonic curvature, J. Math. Pures Appl. (9) 106 (2016), 393–410.
MathSciNet
CrossRef
-
Y. J. Suh, Pseudo-anti commuting Ricci tensor and Ricci soliton real hypersurfaces in the complex quadric, J. Math. Pures Appl. (9) 107 (2017), 429–450.
MathSciNet
CrossRef
-
Y. Wang, Semi-symmetric almost coKähler 3-manifolds, Int. J. Geom. Methods Mod. Phys. 15 (2018), 1850031, 12 pp.
MathSciNet
CrossRef
-
Y. Wang, Nonexistence of Hopf hypersurfaces in complex two-plane Grassmannians with GTW parallel normal Jacobi operator, Rocky Mountain J. Math. 49 (2019), 2375–2393.
MathSciNet
CrossRef
-
Y. Wang, Some recurrent normal Jacobi operators on real hypersurfaces in complex two-plane Grassmannians, Publ. Math. Debrecen 95 (2019), 307–319.
MathSciNet
CrossRef
Glasnik Matematicki Home Page