Glasnik Matematicki, Vol. 58, No. 1 (2023), 67-74. \( \)
PILLAI'S CONJECTURE FOR POLYNOMIALS
Sebastian Heintze
Institute of Analysis and Number Theory, Graz University of Technology, Steyrergasse 30/II, A-8010 Graz, Austria
e-mail:heintze@math.tugraz.at
Abstract.
In this paper we study the polynomial version of Pillai's conjecture on the exponential Diophantine equation
\[
p^n - q^m = f. \]
We prove that for any non-constant polynomial \( f \) there are only finitely many quadruples \( (n,m,\deg p,\deg q) \) consisting of integers \( n,m \geq 2 \) and non-constant polynomials \( p,q \) such that Pillai's equation holds.
Moreover, we will give some examples that there can still be infinitely many possibilities for the polynomials \( p,q \).
2020 Mathematics Subject Classification. 11D61, 11D85
Key words and phrases. Pillai problem, polynomials, \( S \)-units
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.58.1.05
References:
-
M. A. Bennett, On some exponential equations of S.S. Pillai, Canad. J. Math. 53 (2001), 897–922.
MathSciNet
CrossRef
-
W. D. Brownawell and D. W. Masser, Vanishing sums in function fields, Math. Proc. Camb. Phil. Soc. 100 (1986), 427–434.
MathSciNet
CrossRef
-
K. C. Chim, I. Pink and V. Ziegler, On a variant of Pillai's problem II, J. Number Theory 183 (2018), 269–290.
MathSciNet
CrossRef
-
C. Fuchs and S. Heintze, A function field variant of Pillai's problem, J. Number Theory 222 (2021), 278–292.
MathSciNet
CrossRef
-
C. Fuchs, C. Karolus and D. Kreso, Decomposable polynomials in second order linear recurrence sequences, Manuscripta Math. 159 (2019), 321–346.
MathSciNet
CrossRef
-
D. Kreso and R. F. Tichy, On variants of Pillai's problems with polynomials, preprint
-
P. Mihăilescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math. 572 (2004), 167–195.
MathSciNet
CrossRef
-
S. S. Pillai, On \( a^x - b^y = c \), J. Indian Math. Soc. (N.S.) 2 (1936), 119–122.
Link
Glasnik Matematicki Home Page