Glasnik Matematicki, Vol. 58, No. 1 (2023), 59-65. \( \)
A NOTE ON DUJELLA'S UNICITY CONJECTURE
Maohua Le and Anitha Srinivasan
Institute of Mathematics, Lingnan Normal College, Zhangjiang, Guangdong, 524048, China
e-mail:lemaohua2008@163.com
Departamento de métodos cuantitativos, Universidad Pontificia de Comillas (ICADE), C/ Alberto Aguilera, 23 - 28015, Madrid, Spain
e-mail:asrinivasan@icade.comillas.edu
Abstract.
Using properties of binary quadratic Diophantine equations, we prove that if \(r=p^{m} q^{n}\), where \(p, q\) are distinct odd primes and \(m, n\) are positive integers, then the equation \(x^{2}-\left(r^{2}+1\right) y^{2}=r^{2}\) has at most one positive integer solution \((x, y)\) with \(y \lt r-1\).
2020 Mathematics Subject Classification. 11D09, 11R29, 11E16
Key words and phrases. Binary quadratic forms, quadratic diophantine equation, Dujella's conjecture
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.58.1.04
References:
-
D. A. Buell, Binary quadratic forms. Classical theory and modern computations, Springer-Verlag, New York, 1989.
MathSciNet
CrossRef
-
A. Filipin, Y. Fujita and M. Mignotte, The non-extendibility of some parametric families of \(D(-1)\)-triples, Quart. J. Math 63 (2012), 605–621.
MathSciNet
CrossRef
-
Y. Fujita and M. Le, Some exponential Diophantine equations II: The equation \(x^2-Dy^2=k^z\) for even \(k\), Math. Slovaca 72 (2022), 341–354.
MathSciNet
CrossRef
-
M. Le, Some exponential Diophantine equations I: The equation \(D_1x^2-D_2y^2=\lambda k^z\), J. Number Theory 55 (1995), 209–221.
MathSciNet
CrossRef
-
K. R. Matthews, J. P. Robertson and J. White, On a diophantine equation of Andrej Dujella, Glas. Mat. Ser. III 48 (2013), 265–289.
MathSciNet
CrossRef
-
K. R. Matthews, J. P. Robertson and A. Srinivasan, On fundamental solutions of binary quadratic form equations, Acta Arith. 169 (2015), 291–299.
MathSciNet
CrossRef
-
P. Ribenboim, My numbers, my friends. Popular lectures on number theory, Springer-Verlag, New York, 2000.
MathSciNet
CrossRef
-
A. Srinivasan, On the prime divisors of elements of a \(D(-1)\) quadruple, Glas. Mat. Ser. III 49 (2014), 275–285.
MathSciNet
CrossRef
-
A. Srinivasan, \(D(-1)\) quadruples and products of two primes, Glas. Mat. Ser. III 50 (2015), 261–268.
MathSciNet
CrossRef
Glasnik Matematicki Home Page