Glasnik Matematicki, Vol. 58, No. 1 (2023), 59-65. \( \)

A NOTE ON DUJELLA'S UNICITY CONJECTURE

Maohua Le and Anitha Srinivasan

Institute of Mathematics, Lingnan Normal College, Zhangjiang, Guangdong, 524048, China
e-mail:lemaohua2008@163.com

Departamento de métodos cuantitativos, Universidad Pontificia de Comillas (ICADE), C/ Alberto Aguilera, 23 - 28015, Madrid, Spain
e-mail:asrinivasan@icade.comillas.edu


Abstract.   Using properties of binary quadratic Diophantine equations, we prove that if \(r=p^{m} q^{n}\), where \(p, q\) are distinct odd primes and \(m, n\) are positive integers, then the equation \(x^{2}-\left(r^{2}+1\right) y^{2}=r^{2}\) has at most one positive integer solution \((x, y)\) with \(y \lt r-1\).

2020 Mathematics Subject Classification.   11D09, 11R29, 11E16

Key words and phrases.   Binary quadratic forms, quadratic diophantine equation, Dujella's conjecture


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.58.1.04


References:

  1. D. A. Buell, Binary quadratic forms. Classical theory and modern computations, Springer-Verlag, New York, 1989.
    MathSciNet    CrossRef

  2. A. Filipin, Y. Fujita and M. Mignotte, The non-extendibility of some parametric families of \(D(-1)\)-triples, Quart. J. Math 63 (2012), 605–621.
    MathSciNet    CrossRef

  3. Y. Fujita and M. Le, Some exponential Diophantine equations II: The equation \(x^2-Dy^2=k^z\) for even \(k\), Math. Slovaca 72 (2022), 341–354.
    MathSciNet    CrossRef

  4. M. Le, Some exponential Diophantine equations I: The equation \(D_1x^2-D_2y^2=\lambda k^z\), J. Number Theory 55 (1995), 209–221.
    MathSciNet    CrossRef

  5. K. R. Matthews, J. P. Robertson and J. White, On a diophantine equation of Andrej Dujella, Glas. Mat. Ser. III 48 (2013), 265–289.
    MathSciNet    CrossRef

  6. K. R. Matthews, J. P. Robertson and A. Srinivasan, On fundamental solutions of binary quadratic form equations, Acta Arith. 169 (2015), 291–299.
    MathSciNet    CrossRef

  7. P. Ribenboim, My numbers, my friends. Popular lectures on number theory, Springer-Verlag, New York, 2000.
    MathSciNet    CrossRef

  8. A. Srinivasan, On the prime divisors of elements of a \(D(-1)\) quadruple, Glas. Mat. Ser. III 49 (2014), 275–285.
    MathSciNet    CrossRef

  9. A. Srinivasan, \(D(-1)\) quadruples and products of two primes, Glas. Mat. Ser. III 50 (2015), 261–268.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page