Glasnik Matematicki, Vol. 58, No. 1 (2023), 35-57. \( \)
ON THE \(D(4)\)-PAIRS \(\{a, ka\}\) WITH \(k\in \{2,3,6\}\)
Kouèssi Norbert Adédji, Marija Bliznac Trebješanin, Alan Filipin and Alain Togbé
Institut de Mathématiques et de Sciences Physiques, Université d'Abomey-Calavi, Bénin
e-mail:adedjnorb1988@gmail.com
Faculty of Science, University of Split, 21000 Split, Croatia
e-mail:marbli@pmfst.hr
Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb, Croatia
e-mail:filipin@grad.hr
Department of Mathematics and Statistics, Purdue University Northwest, 1401 S, U.S. 421, Westville IN 46391, USA
e-mail:atogbe@pnw.edu
Abstract.
Let \(a\) and \(b=ka\) be positive integers with \(k\in \{2, 3, 6\},\) such that \(ab+4\) is a perfect square. In this paper, we study the extensibility of the \(D(4)\)-pairs \(\{a, ka\}.\) More precisely, we prove that by considering families of positive integers \(c\) depending on \(a,\) if \(\{a, b, c, d\}\) is a set of positive integers which has the property that the product of any two of its elements increased by \(4\) is a perfect square, then \(d\) is given by
\[
d=a+b+c+1/2(abc±√((ab+4)(ac+4)(bc+4))).
\]
As a corollary, we prove that any \(D(4)\)-quadruple tht contains the pair \(\{a, ka\}\) is regular.
2020 Mathematics Subject Classification. 11D09, 11B37, 11J68, 11J86
Key words and phrases. Diophantine \(m\)-tuples, Pellian equations, Linear form in logarithms, Reduction method
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.58.1.03
References:
-
K. N. Adédji, A. Filipin and A. Togbé, The problem of the extension of \(D(4)\)-triple \(\{1, b, c\}\), Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 26 (2022), 21–43.
MathSciNet
CrossRef
-
K. N. Adédji, B. He, A. PintĂ©r and A. Togbé, On the Diophantine pair \(\{a, 3a\}\), J. Number Theory 227 (2021), 330–351.
MathSciNet
CrossRef
-
Lj. Baćić and A. Filipin, On the extensibility of \(D(4)\)-pair \(\{k-2,k+2\}\), J. Comb. Number Theory 5 (2013), 181–197.
MathSciNet
-
Lj. Baćić and A. Filipin, A note on the number of \(D(4)\)-quintuples, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 18 (2014), 7–13.
MathSciNet
-
A. Baker and G. Wüstholz, Logarithmic form and group varieties, J. Reine Angew. Math. 442 (1993), 19–62.
MathSciNet
CrossRef
-
M. Bliznac Trebješanin, Extension of a Diophantine triple with the property \(D(4)\), Acta Math. Hungar. 163 (2021), 213–-246.
MathSciNet
CrossRef
-
A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291–306.
MathSciNet
CrossRef
-
A. Dujella and A. M. S. Ramasamy, Fibonacci numbers and sets with the property \(D(4)\), Bull. Belg. Math. Soc. Simon Stevin 12 (2005), 401–412.
MathSciNet
Link
-
A. Filipin, There does not exist a \(D(4)\)-sextuple, J. Number Theory, 128 (2008), 1555–1565.
MathSciNet
CrossRef
-
A. Filipin, On the size of sets in which \(xy + 4\) is always a square, Rocky Mountain J. Math. 39 (2009), 1195–1224.
MathSciNet
CrossRef
-
A. Filipin, The extendibility of \(D(4)\)-pair \(\{F_{2k}, 5F_{2k}\}\), Fibonacci Quart. 53 (2015), 124–129.
MathSciNet
-
Y. Fujita, The extensibility of Diophantine pairs \(\{k-1, k+1\}\), J. Number Theory 128 (2008), 322–353.
MathSciNet
CrossRef
-
T. L. Heath, Diophantus of Alexandria: A study in the history of Greek Algebra, Powell's Bookstore, Chicago, Martino Publishing, Mansfield Center, 2003.
-
E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II, Izv. Math. 64 (2000), 1217–1269.
MathSciNet
CrossRef
Glasnik Matematicki Home Page