Glasnik Matematicki, Vol. 58, No. 1 (2023), 35-57. \( \)

ON THE \(D(4)\)-PAIRS \(\{a, ka\}\) WITH \(k\in \{2,3,6\}\)

Kouèssi Norbert Adédji, Marija Bliznac Trebješanin, Alan Filipin and Alain Togbé

Institut de Mathématiques et de Sciences Physiques, Université d'Abomey-Calavi, Bénin
e-mail:adedjnorb1988@gmail.com

Faculty of Science, University of Split, 21000 Split, Croatia
e-mail:marbli@pmfst.hr

Faculty of Civil Engineering, University of Zagreb, 10000 Zagreb, Croatia
e-mail:filipin@grad.hr

Department of Mathematics and Statistics, Purdue University Northwest, 1401 S, U.S. 421, Westville IN 46391, USA
e-mail:atogbe@pnw.edu


Abstract.   Let \(a\) and \(b=ka\) be positive integers with \(k\in \{2, 3, 6\},\) such that \(ab+4\) is a perfect square. In this paper, we study the extensibility of the \(D(4)\)-pairs \(\{a, ka\}.\) More precisely, we prove that by considering families of positive integers \(c\) depending on \(a,\) if \(\{a, b, c, d\}\) is a set of positive integers which has the property that the product of any two of its elements increased by \(4\) is a perfect square, then \(d\) is given by \[ d=a+b+c+1/2(abc±√((ab+4)(ac+4)(bc+4))). \] As a corollary, we prove that any \(D(4)\)-quadruple tht contains the pair \(\{a, ka\}\) is regular.

2020 Mathematics Subject Classification.   11D09, 11B37, 11J68, 11J86

Key words and phrases.   Diophantine \(m\)-tuples, Pellian equations, Linear form in logarithms, Reduction method


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.58.1.03


References:

  1. K. N. Adédji, A. Filipin and A. Togbé, The problem of the extension of \(D(4)\)-triple \(\{1, b, c\}\), Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 26 (2022), 21–43.
    MathSciNet    CrossRef

  2. K. N. Adédji, B. He, A. PintĂ©r and A. Togbé, On the Diophantine pair \(\{a, 3a\}\), J. Number Theory 227 (2021), 330–351.
    MathSciNet    CrossRef

  3. Lj. Baćić and A. Filipin, On the extensibility of \(D(4)\)-pair \(\{k-2,k+2\}\), J. Comb. Number Theory 5 (2013), 181–197.
    MathSciNet

  4. Lj. Baćić and A. Filipin, A note on the number of \(D(4)\)-quintuples, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 18 (2014), 7–13.
    MathSciNet

  5. A. Baker and G. Wüstholz, Logarithmic form and group varieties, J. Reine Angew. Math. 442 (1993), 19–62.
    MathSciNet    CrossRef

  6. M. Bliznac Trebješanin, Extension of a Diophantine triple with the property \(D(4)\), Acta Math. Hungar. 163 (2021), 213–-246.
    MathSciNet    CrossRef

  7. A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291–306.
    MathSciNet    CrossRef

  8. A. Dujella and A. M. S. Ramasamy, Fibonacci numbers and sets with the property \(D(4)\), Bull. Belg. Math. Soc.  Simon Stevin 12 (2005), 401–412.
    MathSciNet    Link

  9. A. Filipin, There does not exist a \(D(4)\)-sextuple, J. Number  Theory, 128 (2008), 1555–1565.
    MathSciNet    CrossRef

  10. A. Filipin, On the size of sets in which \(xy + 4\) is always a square, Rocky Mountain J. Math. 39 (2009), 1195–1224.
    MathSciNet    CrossRef

  11. A. Filipin, The extendibility of \(D(4)\)-pair \(\{F_{2k}, 5F_{2k}\}\), Fibonacci Quart. 53 (2015), 124–129.
    MathSciNet

  12. Y. Fujita, The extensibility of Diophantine pairs \(\{k-1, k+1\}\), J. Number Theory 128 (2008), 322–353.
    MathSciNet    CrossRef

  13. T. L. Heath, Diophantus of Alexandria: A study in the history of Greek Algebra, Powell's Bookstore, Chicago, Martino Publishing, Mansfield Center, 2003.

  14. E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II, Izv. Math. 64 (2000), 1217–1269.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page