Glasnik Matematicki, Vol. 58, No. 1 (2023), 17-34. \( \)

ON THE COEFFICIENTS OF A CLASS OF TERNARY CYCLOTOMIC POLYNOMIALS

Bin Zhang

School of Mathematical Sciences, Qufu Normal University, 273165 Qufu, P. R. China
e-mail:zhangb2015@qfnu.edu.cn


Abstract.   A cyclotomic polynomial \(\Phi_n(x)\) is said to be flat if its nonzero coefficients involve only \(\pm1\). In this paper, for odd primes \( p \le q \le r \) with \(q\equiv 1\pmod p\) and \(9r\equiv \pm1\pmod {pq}\), we prove that \(\Phi_{pqr}(x)\) is flat if and only if \(p=5\), \(q\geq 41\), and \(q\equiv 1\pmod 5\).

2020 Mathematics Subject Classification.   11B83, 11C08, 11N56.

Key words and phrases.   Cyclotomic polynomial, Coefficients of cyclotomic polynomial, Flat ternary cyclotomic polynomial, Non-flat ternary cyclotomic polynomial.


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.58.1.02


References:

  1. G. Bachman, Flat cyclotomic polynomials of order three, Bull. London Math. Soc. 38 (2006), 53–60.
    MathSciNet    CrossRef

  2. S. Elder, Flat cyclotomic polynomials: a new approach, arXiv:1207.5811v1 (2012).
    Link

  3. T. J. Flanagan, On the coefficients of ternary cyclotomic polynomials, MS Thesis, University of Nevada, Las Vegas, 2007.
    Link

  4. G. B. Imhoff, On the coefficients of cyclotomic polynomials, MS Thesis, California State University, Northridge, 2013.
    Link

  5. C. G. Ji, A specific family of cyclotomic polynomials of order three, Sci. China Math. 53 (2010), 2269–2274.
    MathSciNet    CrossRef

  6. N. Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory 127 (2007), 118–126.
    MathSciNet    CrossRef

  7. N. Kaplan, Flat cyclotomic polynomials of order four and higher, Integers 10 (2010), 357–363.
    MathSciNet    CrossRef

  8. T. Y. Lam ands K. H. Leung, On the cyclotomic polynomial \(\Phi_{pq}(X)\), Amer. Math. Monthly 103 (1996), 562–564.
    MathSciNet    CrossRef

  9. C. Sanna, A survey on coefficients of cyclotomic polynomials, Expo. Math. 40 (2022), 469–494.
    MathSciNet    CrossRef

  10. R. Thangadurai, On the coefficients of cyclotomic polynomials, in: Cyclotomic fields and related topics, eds. S. D. Adhikari, S. A. Katre, D. Thakur, Bhaskaracharya Pratishthana, Pune, 2000, 311–322.
    MathSciNet    Link

  11. B. Zhang and Y. Zhou, On a class of ternary cyclotomic polynomials, Bull. Korean Math. Soc. 52 (2015), 1911–1924.
    MathSciNet    CrossRef

  12. B. Zhang, Remarks on the flatness of ternary cyclotomic polynomials, Int. J. Number Theory 13 (2017), 529–547.
    MathSciNet    CrossRef

  13. B. Zhang, The flatness of a class of ternary cyclotomic polynomials, Publ. Math. Debrecen 97 (2020), 201–216.
    MathSciNet    CrossRef

  14. B. Zhang, The flatness of ternary cyclotomic polynomials, Rend. Semin. Mat. Univ. Padova 145 (2021), 1–42.
    MathSciNet    CrossRef

  15. B. Zhang, A remark on flat ternary cyclotomic polynomials, Glas. Mat. Ser. III 56 (2021), 241–261.
    MathSciNet    CrossRef

  16. J. Zhao and X. K. Zhang, Coefficients of ternary cyclotomic polynomials, J. Number Theory 130 (2010), 2223–2237.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page