Glasnik Matematicki, Vol. 58, No. 1 (2023), 1-16.
INEQUALITIES ASSOCIATED WITH THE BAXTER NUMBERS
James Jing Yu Zhao
School of Accounting, Guangzhou College of Technology and Business, Foshan, Guangdong 528138, China
e-mail:zhao@gzgs.edu.cn
Abstract.
The Baxter numbers enumerate a lot of algebraic and combinatorial objects such as the bases for subalgebras of the Malvenuto-Reutenauer Hopf algebra and the pairs of twin binary trees on nodes.
The Turán inequalities and higher order Turán inequalities are related to the Laguerre-Pólya (-) class of real entire functions, and the - class has a close relation with the Riemann hypothesis. The Turán type inequalities have received much attention.
In this paper, we are mainly concerned with Turán type inequalities, or more precisely, the log-behavior, and the higher order Turán inequalities associated with the Baxter numbers. We prove the Turán inequalities (or equivalently, the log-concavity) of the sequences and .
Monotonicity of the sequence is also obtained. Finally, we prove that the sequences and satisfy the higher order Turán inequalities.
2020 Mathematics Subject Classification. 05A20, 11B83
Key words and phrases. Log-concavity, log-convexity, log-balancedness, higher order Turán inequalities, Baxter numbers
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.58.1.01
References:
-
J.-C. Aval, A. Boussicault, M. Bouvel, O. Guibert and M. Silimbani, Baxter tree-like tableaux, arXiv.2108.06212v1, 2021.
-
G. Baxter, On fixed points of the composite of commuting functions, Proc. Amer. Math. Soc. 15 (1964), 851–855.
MathSciNet
CrossRef
-
G. D. Birkhoff and W.J. Trjitzinsky, Analytic theory of singular difference equations, Acta Math. 60 (1933), 1–89.
MathSciNet
CrossRef
-
R. P. Boas Jr., Entire functions, Academic Press Inc., New York, 1954.
MathSciNet
-
G. Chatel and V. Pilaud, Cambrian Hopf algebras, Adv. Math. 311 (2017), 598–633.
MathSciNet
CrossRef
-
W. Y. C. Chen, The spt-function of Andrews, in: Surveys in Combinatorics 2017, eds. Claesson, A., Dukes, M., Kitaev, S., Manlove, D., Meeks, K., London Math. Soc. Lecture Note Ser. 440, Cambridge Univ. Press, Cambridge, 2017, 141–203.
MathSciNet
-
W. Y. C. Chen, J. J. F. Guo and L. X. W. Wang, Infinitely log-monotonic combinatorial sequences, Adv. in Appl. Math. 52 (2014), 99–120.
MathSciNet
CrossRef
-
W. Y. C. Chen, D. X. Q. Jia and L. X. W. Wang, Higher order Turán inequalities for the partition function, Trans. Amer. Math. Soc. 372 (2019), 2143–2165.
MathSciNet
CrossRef
-
F. R. K. Chung, R. L. Graham, V. E. Hoggatt Jr. and M. Kleiman, The number of Baxter permutations, J. Combin. Theory Ser. A 24 (1978), 382–394.
MathSciNet
CrossRef
-
R. Cori, S. Dulucq and G. Viennot, Shuffle of Parenthesis Systems and Baxter Permutations, J. Combin. Theory Ser. A 43 (1986), 1–22.
MathSciNet
CrossRef
-
J. Courtiel, E. Fusy, M. Lepoutre and M. Mishna, Bijections for Weyl Chamber walks ending on an axis, using arc diagrams and Schnyder woods, European J. Combin. 69 (2018), 126–142.
MathSciNet
CrossRef
-
T. Craven and G. Csordas, Jensen polynomials and the Turán and Laguerre inequalities, Pacific J. Math. 136 (1989), 241–260.
MathSciNet
Link
-
G. Csordas, T.S. Norfolk and R.S. Varga, The Riemann hypothesis and the Turán inequalities, Trans. Amer. Math. Soc. 296 (1986), 521–541.
MathSciNet
CrossRef
-
G. Csordas and R.S. Varga, Necessary and sufficient conditions and the Riemann hypothesis, Adv. in Appl. Math. 11 (1990), 328–357.
MathSciNet
CrossRef
-
D.K. Dimitrov, Higher order Turán inequalities, Proc. Amer. Math. Soc. 126 (1998), 2033–2037.
MathSciNet
CrossRef
-
D. K. Dimitrov and F.R. Lucas, Higher order Turán inequalities for the Riemann -function, Proc. Amer. Math. Soc. 139 (2011), 1013–1022.
MathSciNet
CrossRef
-
T. Došlić, Log-balanced combinatorial sequences, Intl. J. Math. Math. Sci. 4 (2005), 507–522.
MathSciNet
CrossRef
-
T. Došlić, D. Svrtan and D. Veljan, Enumerative aspects of secondary structures, Discrete Math. 285 (2004), 67–82.
MathSciNet
CrossRef
-
T. Došlić and D. Veljan, Calculus proofs of some combinatorial inequalities, Math. Inequal. Appl. 6 (2003), 197–209.
MathSciNet
CrossRef
-
T. Došlić and D. Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math. 308 (2008), 2182–2212.
MathSciNet
CrossRef
-
S. Dulucq and O. Guibert, Baxter permutations, Discrete Math. 180 (1998), 143–156.
MathSciNet
CrossRef
-
S. Felsner, É. Fusy, M. Noy and D. Orden, Bijections for Baxter families and related objects, J. Combin. Theory Ser. A 118 (2011), 993–1020.
MathSciNet
CrossRef
-
S. Giraudo, Algebraic and combinatorial structures on pairs of twin binary trees, J. Algebra 360 (2012), 115–157.
MathSciNet
CrossRef
-
Q.-H. Hou and Z.-R. Zhang, Asymptotic -log-convexity and -recursive sequences, J. Symbolic Comput. 93 (2019), 21–33.
MathSciNet
CrossRef
-
Q.-H. Hou and G. Li, Log-concavity of -recursive sequences, J. Symbolic Comput. 107 (2021), 251–268.
MathSciNet
CrossRef
-
S. Law and N. Reading, The Hopf algebra of diagonal rectangulations, J. Combin. Theory Ser. A 119 (2012), 788–824.
MathSciNet
CrossRef
-
L. L. Liu and Y. Wang, On the log-convexity of combinatorial sequences, Adv. in Appl. Math. 39 (2007), 453–476.
MathSciNet
CrossRef
-
G. V. Milovanović, D. S. Mitrinović and Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Scientific Publishing Co., Inc., River Edge, NJ, 1994.
MathSciNet
CrossRef
-
C. P. Niculescu, A new look at Newton's inequalities, J. Inequal. Pure Appl. Math. 1 (2000), Article 17, 14.
MathSciNet
-
G. Pólya, Über die algebraisch-funktionentheoretischcen Untersuchungen von J. L. W. V. Jensen, Kgl. Danske Vid. Sel. Math.-Fys. Medd. 7 (1927), 3–33.
-
N. Reading, Lattice congruences, fans and Hopf algebras, J. Combin. Theory Ser. A 110 (2005), 237–273.
MathSciNet
CrossRef
-
P. Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag, New York, 2004.
MathSciNet
-
S. Rosset, Normalized symmetric functions, Newton's inequalities and a new set of stronger inequalities, Amer. Math. Monthly 96 (1989), 815–819.
MathSciNet
CrossRef
-
W. Rudin, Principles of mathematical analysis, third edition, McGraw-Hill Book Co., New York-Auckland-DĂĽsseldorf, 1976.
MathSciNet
-
N. J. A. Sloane, The On-line encyclopedia of integer sequences, .
-
Z.-W. Sun, Conjectures involving arithmetical sequences, in: Number theory–arithmetic in Shangri-La,
Link
MathSciNet
CrossRef
-
Z.-W. Sun, New conjectures in number theory and combinatorics, Harbin institute of Technology Press, 2021.
-
G. Szegö, On an inequality of P. Turán concerning Legendre polynomials, Bull. Amer. Math. Soc. 54 (1948), 401–405.
MathSciNet
CrossRef
-
G. Viennot, A bijective proof for the number of Baxter permutations, in: Troisième Séminaire Lotharingien de Combinatoire, Le Klebach 1981, 28–29.
-
L. X. W. Wang, Higher order Turán inequalities for combinatorial sequences, Adv. in Appl. Math. 110 (2019), 180–196.
MathSciNet
CrossRef
-
J. Wimp and D. Zeilberger, Resurrecting the asymptotics of linear recurrences, J. Math. Anal. Appl. 111 (1985), 162–176.
MathSciNet
CrossRef
-
D. Zeilberger, The method of creative telescoping, J. Symbolic Comput. 11 (1991), 195–204.
MathSciNet
CrossRef
Glasnik Matematicki Home Page