Glasnik Matematicki, Vol. 58, No. 1 (2023), 1-16. \( \)
INEQUALITIES ASSOCIATED WITH THE BAXTER NUMBERS
James Jing Yu Zhao
School of Accounting, Guangzhou College of Technology and Business, Foshan, Guangdong 528138, China
e-mail:zhao@gzgs.edu.cn
Abstract.
The Baxter numbers \(B_n\) enumerate a lot of algebraic and combinatorial objects such as the bases for subalgebras of the Malvenuto-Reutenauer Hopf algebra and the pairs of twin binary trees on \(n\) nodes.
The Turán inequalities and higher order Turán inequalities are related to the Laguerre-Pólya (\(\mathcal{L}\)-\(\mathcal{P}\)) class of real entire functions, and the \(\mathcal{L}\)-\(\mathcal{P}\) class has a close relation with the Riemann hypothesis. The Turán type inequalities have received much attention.
In this paper, we are mainly concerned with Turán type inequalities, or more precisely, the log-behavior, and the higher order Turán inequalities associated with the Baxter numbers. We prove the Turán inequalities (or equivalently, the log-concavity) of the sequences \(\{B_{n+1}/B_n\}_{n\geqslant 0}\) and \(\{\hspace{-2.5pt}\sqrt[n]{B_n}\}_{n\geqslant 1}\).
Monotonicity of the sequence \(\{\hspace{-2.5pt}\sqrt[n]{B_n}\}_{n\geqslant 1}\) is also obtained. Finally, we prove that the sequences \(\{B_n/n!\}_{n\geqslant 2}\) and \(\{B_{n+1}B_n^{-1}/n!\}_{n\geqslant 2}\) satisfy the higher order Turán inequalities.
2020 Mathematics Subject Classification. 05A20, 11B83
Key words and phrases. Log-concavity, log-convexity, log-balancedness, higher order Turán inequalities, Baxter numbers
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.58.1.01
References:
-
J.-C. Aval, A. Boussicault, M. Bouvel, O. Guibert and M. Silimbani, Baxter tree-like tableaux, arXiv.2108.06212v1, 2021.
-
G. Baxter, On fixed points of the composite of commuting functions, Proc. Amer. Math. Soc. 15 (1964), 851–855.
MathSciNet
CrossRef
-
G. D. Birkhoff and W.J. Trjitzinsky, Analytic theory of singular difference equations, Acta Math. 60 (1933), 1–89.
MathSciNet
CrossRef
-
R. P. Boas Jr., Entire functions, Academic Press Inc., New York, 1954.
MathSciNet
-
G. Chatel and V. Pilaud, Cambrian Hopf algebras, Adv. Math. 311 (2017), 598–633.
MathSciNet
CrossRef
-
W. Y. C. Chen, The spt-function of Andrews, in: Surveys in Combinatorics 2017, eds. Claesson, A., Dukes, M., Kitaev, S., Manlove, D., Meeks, K., London Math. Soc. Lecture Note Ser. 440, Cambridge Univ. Press, Cambridge, 2017, 141–203.
MathSciNet
-
W. Y. C. Chen, J. J. F. Guo and L. X. W. Wang, Infinitely log-monotonic combinatorial sequences, Adv. in Appl. Math. 52 (2014), 99–120.
MathSciNet
CrossRef
-
W. Y. C. Chen, D. X. Q. Jia and L. X. W. Wang, Higher order Turán inequalities for the partition function, Trans. Amer. Math. Soc. 372 (2019), 2143–2165.
MathSciNet
CrossRef
-
F. R. K. Chung, R. L. Graham, V. E. Hoggatt Jr. and M. Kleiman, The number of Baxter permutations, J. Combin. Theory Ser. A 24 (1978), 382–394.
MathSciNet
CrossRef
-
R. Cori, S. Dulucq and G. Viennot, Shuffle of Parenthesis Systems and Baxter Permutations, J. Combin. Theory Ser. A 43 (1986), 1–22.
MathSciNet
CrossRef
-
J. Courtiel, E. Fusy, M. Lepoutre and M. Mishna, Bijections for Weyl Chamber walks ending on an axis, using arc diagrams and Schnyder woods, European J. Combin. 69 (2018), 126–142.
MathSciNet
CrossRef
-
T. Craven and G. Csordas, Jensen polynomials and the Turán and Laguerre inequalities, Pacific J. Math. 136 (1989), 241–260.
MathSciNet
Link
-
G. Csordas, T.S. Norfolk and R.S. Varga, The Riemann hypothesis and the Turán inequalities, Trans. Amer. Math. Soc. 296 (1986), 521–541.
MathSciNet
CrossRef
-
G. Csordas and R.S. Varga, Necessary and sufficient conditions and the Riemann hypothesis, Adv. in Appl. Math. 11 (1990), 328–357.
MathSciNet
CrossRef
-
D.K. Dimitrov, Higher order Turán inequalities, Proc. Amer. Math. Soc. 126 (1998), 2033–2037.
MathSciNet
CrossRef
-
D. K. Dimitrov and F.R. Lucas, Higher order Turán inequalities for the Riemann \( \xi \)-function, Proc. Amer. Math. Soc. 139 (2011), 1013–1022.
MathSciNet
CrossRef
-
T. Došlić, Log-balanced combinatorial sequences, Intl. J. Math. Math. Sci. 4 (2005), 507–522.
MathSciNet
CrossRef
-
T. Došlić, D. Svrtan and D. Veljan, Enumerative aspects of secondary structures, Discrete Math. 285 (2004), 67–82.
MathSciNet
CrossRef
-
T. Došlić and D. Veljan, Calculus proofs of some combinatorial inequalities, Math. Inequal. Appl. 6 (2003), 197–209.
MathSciNet
CrossRef
-
T. Došlić and D. Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math. 308 (2008), 2182–2212.
MathSciNet
CrossRef
-
S. Dulucq and O. Guibert, Baxter permutations, Discrete Math. 180 (1998), 143–156.
MathSciNet
CrossRef
-
S. Felsner, É. Fusy, M. Noy and D. Orden, Bijections for Baxter families and related objects, J. Combin. Theory Ser. A 118 (2011), 993–1020.
MathSciNet
CrossRef
-
S. Giraudo, Algebraic and combinatorial structures on pairs of twin binary trees, J. Algebra 360 (2012), 115–157.
MathSciNet
CrossRef
-
Q.-H. Hou and Z.-R. Zhang, Asymptotic \( r \)-log-convexity and \( P \)-recursive sequences, J. Symbolic Comput. 93 (2019), 21–33.
MathSciNet
CrossRef
-
Q.-H. Hou and G. Li, Log-concavity of \( P \)-recursive sequences, J. Symbolic Comput. 107 (2021), 251–268.
MathSciNet
CrossRef
-
S. Law and N. Reading, The Hopf algebra of diagonal rectangulations, J. Combin. Theory Ser. A 119 (2012), 788–824.
MathSciNet
CrossRef
-
L. L. Liu and Y. Wang, On the log-convexity of combinatorial sequences, Adv. in Appl. Math. 39 (2007), 453–476.
MathSciNet
CrossRef
-
G. V. Milovanović, D. S. Mitrinović and Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Scientific Publishing Co., Inc., River Edge, NJ, 1994.
MathSciNet
CrossRef
-
C. P. Niculescu, A new look at Newton's inequalities, J. Inequal. Pure Appl. Math. 1 (2000), Article 17, 14.
MathSciNet
-
G. Pólya, Über die algebraisch-funktionentheoretischcen Untersuchungen von J. L. W. V. Jensen, Kgl. Danske Vid. Sel. Math.-Fys. Medd. 7 (1927), 3–33.
-
N. Reading, Lattice congruences, fans and Hopf algebras, J. Combin. Theory Ser. A 110 (2005), 237–273.
MathSciNet
CrossRef
-
P. Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag, New York, 2004.
MathSciNet
-
S. Rosset, Normalized symmetric functions, Newton's inequalities and a new set of stronger inequalities, Amer. Math. Monthly 96 (1989), 815–819.
MathSciNet
CrossRef
-
W. Rudin, Principles of mathematical analysis, third edition, McGraw-Hill Book Co., New York-Auckland-DĂĽsseldorf, 1976.
MathSciNet
-
N. J. A. Sloane, The On-line encyclopedia of integer sequences, .
-
Z.-W. Sun, Conjectures involving arithmetical sequences, in: Number theory–arithmetic in Shangri-La,
Link
MathSciNet
CrossRef
-
Z.-W. Sun, New conjectures in number theory and combinatorics, Harbin institute of Technology Press, 2021.
-
G. Szegö, On an inequality of P. Turán concerning Legendre polynomials, Bull. Amer. Math. Soc. 54 (1948), 401–405.
MathSciNet
CrossRef
-
G. Viennot, A bijective proof for the number of Baxter permutations, in: Troisième Séminaire Lotharingien de Combinatoire, Le Klebach 1981, 28–29.
-
L. X. W. Wang, Higher order Turán inequalities for combinatorial sequences, Adv. in Appl. Math. 110 (2019), 180–196.
MathSciNet
CrossRef
-
J. Wimp and D. Zeilberger, Resurrecting the asymptotics of linear recurrences, J. Math. Anal. Appl. 111 (1985), 162–176.
MathSciNet
CrossRef
-
D. Zeilberger, The method of creative telescoping, J. Symbolic Comput. 11 (1991), 195–204.
MathSciNet
CrossRef
Glasnik Matematicki Home Page