Glasnik Matematicki, Vol. 58, No. 1 (2023), 1-16. \( \)

INEQUALITIES ASSOCIATED WITH THE BAXTER NUMBERS

James Jing Yu Zhao

School of Accounting, Guangzhou College of Technology and Business, Foshan, Guangdong 528138, China
e-mail:zhao@gzgs.edu.cn


Abstract.   The Baxter numbers \(B_n\) enumerate a lot of algebraic and combinatorial objects such as the bases for subalgebras of the Malvenuto-Reutenauer Hopf algebra and the pairs of twin binary trees on \(n\) nodes. The Turán inequalities and higher order Turán inequalities are related to the Laguerre-Pólya (\(\mathcal{L}\)-\(\mathcal{P}\)) class of real entire functions, and the \(\mathcal{L}\)-\(\mathcal{P}\) class has a close relation with the Riemann hypothesis. The Turán type inequalities have received much attention. In this paper, we are mainly concerned with Turán type inequalities, or more precisely, the log-behavior, and the higher order Turán inequalities associated with the Baxter numbers. We prove the Turán inequalities (or equivalently, the log-concavity) of the sequences \(\{B_{n+1}/B_n\}_{n\geqslant 0}\) and \(\{\hspace{-2.5pt}\sqrt[n]{B_n}\}_{n\geqslant 1}\). Monotonicity of the sequence \(\{\hspace{-2.5pt}\sqrt[n]{B_n}\}_{n\geqslant 1}\) is also obtained. Finally, we prove that the sequences \(\{B_n/n!\}_{n\geqslant 2}\) and \(\{B_{n+1}B_n^{-1}/n!\}_{n\geqslant 2}\) satisfy the higher order Turán inequalities.

2020 Mathematics Subject Classification.   05A20, 11B83

Key words and phrases.   Log-concavity, log-convexity, log-balancedness, higher order Turán inequalities, Baxter numbers


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.58.1.01


References:

  1. J.-C. Aval, A. Boussicault, M. Bouvel, O. Guibert and M. Silimbani, Baxter tree-like tableaux, arXiv.2108.06212v1, 2021.

  2. G. Baxter, On fixed points of the composite of commuting functions, Proc. Amer. Math. Soc. 15 (1964), 851–855.
    MathSciNet    CrossRef

  3. G. D. Birkhoff and W.J. Trjitzinsky, Analytic theory of singular difference equations, Acta Math. 60 (1933), 1–89.
    MathSciNet    CrossRef

  4. R. P. Boas Jr., Entire functions, Academic Press Inc., New York, 1954.
    MathSciNet

  5. G. Chatel and V. Pilaud, Cambrian Hopf algebras, Adv. Math. 311 (2017), 598–633.
    MathSciNet    CrossRef

  6. W. Y. C. Chen, The spt-function of Andrews, in: Surveys in Combinatorics 2017, eds. Claesson, A., Dukes, M., Kitaev, S., Manlove, D., Meeks, K., London Math. Soc. Lecture Note Ser. 440, Cambridge Univ. Press, Cambridge, 2017, 141–203.
    MathSciNet

  7. W. Y. C. Chen, J. J. F. Guo and L. X. W. Wang, Infinitely log-monotonic combinatorial sequences, Adv. in Appl. Math. 52 (2014), 99–120.
    MathSciNet    CrossRef

  8. W. Y. C. Chen, D. X. Q. Jia and L. X. W. Wang, Higher order Turán inequalities for the partition function, Trans. Amer. Math. Soc. 372 (2019), 2143–2165.
    MathSciNet    CrossRef

  9. F. R. K. Chung, R. L. Graham, V. E. Hoggatt Jr. and M. Kleiman, The number of Baxter permutations, J. Combin. Theory Ser. A 24 (1978), 382–394.
    MathSciNet    CrossRef

  10. R. Cori, S. Dulucq and G. Viennot, Shuffle of Parenthesis Systems and Baxter Permutations, J. Combin. Theory Ser. A 43 (1986), 1–22.
    MathSciNet    CrossRef

  11. J. Courtiel, E. Fusy, M. Lepoutre and M. Mishna, Bijections for Weyl Chamber walks ending on an axis, using arc diagrams and Schnyder woods, European J. Combin. 69 (2018), 126–142.
    MathSciNet    CrossRef

  12. T. Craven and G. Csordas, Jensen polynomials and the Turán and Laguerre inequalities, Pacific J. Math. 136 (1989), 241–260.
    MathSciNet    Link

  13. G. Csordas, T.S. Norfolk and R.S. Varga, The Riemann hypothesis and the Turán inequalities, Trans. Amer. Math. Soc. 296 (1986), 521–541.
    MathSciNet    CrossRef

  14. G. Csordas and R.S. Varga, Necessary and sufficient conditions and the Riemann hypothesis, Adv. in Appl. Math. 11 (1990), 328–357.
    MathSciNet    CrossRef

  15. D.K. Dimitrov, Higher order Turán inequalities, Proc. Amer. Math. Soc. 126 (1998), 2033–2037.
    MathSciNet    CrossRef

  16. D. K. Dimitrov and F.R. Lucas, Higher order Turán inequalities for the Riemann \( \xi \)-function, Proc. Amer. Math. Soc. 139 (2011), 1013–1022.
    MathSciNet    CrossRef

  17. T. Došlić, Log-balanced combinatorial sequences, Intl. J. Math. Math. Sci. 4 (2005), 507–522.
    MathSciNet    CrossRef

  18. T. Došlić, D. Svrtan and D. Veljan, Enumerative aspects of secondary structures, Discrete Math. 285 (2004), 67–82.
    MathSciNet    CrossRef

  19. T. Došlić and D. Veljan, Calculus proofs of some combinatorial inequalities, Math. Inequal. Appl. 6 (2003), 197–209.
    MathSciNet    CrossRef

  20. T. Došlić and D. Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math. 308 (2008), 2182–2212.
    MathSciNet    CrossRef

  21. S. Dulucq and O. Guibert, Baxter permutations, Discrete Math. 180 (1998), 143–156.
    MathSciNet    CrossRef

  22. S. Felsner, É. Fusy, M. Noy and D. Orden, Bijections for Baxter families and related objects, J. Combin. Theory Ser. A 118 (2011), 993–1020.
    MathSciNet    CrossRef

  23. S. Giraudo, Algebraic and combinatorial structures on pairs of twin binary trees, J. Algebra 360 (2012), 115–157.
    MathSciNet    CrossRef

  24. Q.-H. Hou and Z.-R. Zhang, Asymptotic \( r \)-log-convexity and \( P \)-recursive sequences, J. Symbolic Comput. 93 (2019), 21–33.
    MathSciNet    CrossRef

  25. Q.-H. Hou and G. Li, Log-concavity of \( P \)-recursive sequences, J. Symbolic Comput. 107 (2021), 251–268.
    MathSciNet    CrossRef

  26. S. Law and N. Reading, The Hopf algebra of diagonal rectangulations, J. Combin. Theory Ser. A 119 (2012), 788–824.
    MathSciNet    CrossRef

  27. L. L. Liu and Y. Wang, On the log-convexity of combinatorial sequences, Adv. in Appl. Math. 39 (2007), 453–476.
    MathSciNet    CrossRef

  28. G. V. Milovanović, D. S. Mitrinović and Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Scientific Publishing Co., Inc., River Edge, NJ, 1994.
    MathSciNet    CrossRef

  29. C. P. Niculescu, A new look at Newton's inequalities, J. Inequal. Pure Appl. Math. 1 (2000), Article 17, 14.
    MathSciNet

  30. G. Pólya, Über die algebraisch-funktionentheoretischcen Untersuchungen von J. L. W. V. Jensen, Kgl. Danske Vid. Sel. Math.-Fys. Medd. 7 (1927), 3–33.

  31. N. Reading, Lattice congruences, fans and Hopf algebras, J. Combin. Theory Ser. A 110 (2005), 237–273.
    MathSciNet    CrossRef

  32. P. Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag, New York, 2004.
    MathSciNet

  33. S. Rosset, Normalized symmetric functions, Newton's inequalities and a new set of stronger inequalities, Amer. Math. Monthly 96 (1989), 815–819.
    MathSciNet    CrossRef

  34. W. Rudin, Principles of mathematical analysis, third edition, McGraw-Hill Book Co., New York-Auckland-DĂĽsseldorf, 1976.
    MathSciNet

  35. N. J. A. Sloane, The On-line encyclopedia of integer sequences, .

  36. Z.-W. Sun, Conjectures involving arithmetical sequences, in: Number theory–arithmetic in Shangri-La,
    Link    MathSciNet    CrossRef

  37. Z.-W. Sun, New conjectures in number theory and combinatorics, Harbin institute of Technology Press, 2021.

  38. G. Szegö, On an inequality of P. Turán concerning Legendre polynomials, Bull. Amer. Math. Soc. 54 (1948), 401–405.
    MathSciNet    CrossRef

  39. G. Viennot, A bijective proof for the number of Baxter permutations, in: Troisième Séminaire Lotharingien de Combinatoire, Le Klebach 1981, 28–29.

  40. L. X. W. Wang, Higher order Turán inequalities for combinatorial sequences, Adv. in Appl. Math. 110 (2019), 180–196.
    MathSciNet    CrossRef

  41. J. Wimp and D. Zeilberger, Resurrecting the asymptotics of linear recurrences, J. Math. Anal. Appl. 111 (1985), 162–176.
    MathSciNet    CrossRef

  42. D. Zeilberger, The method of creative telescoping, J. Symbolic Comput. 11 (1991), 195–204.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page