Glasnik Matematicki, Vol. 57, No. 2 (2022), 291-312. \( \)

TOPOLOGICAL ENTROPY OF PSEUDO-ANOSOV MAPS ON PUNCTURED SURFACES VS. HOMOLOGY OF MAPPING TORI

Hyungryul Baik, Juhun Baik, Changsub Kim and Philippe Tranchida

Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
e-mail:hrbaik@kaist.ac.kr

Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
e-mail:jhbaik@kaist.ac.kr

Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
e-mail:kcs55505@kaist.ac.kr

Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
e-mail:tranchida.philippe@gmail.com


Abstract.   We investigate the relation between the topological entropy of pseudo-Anosov maps on surfaces with punctures and the rank of the first homology of their mapping tori. On the surface \(S\) of genus \(g\) with \(n\) punctures, we show that the minimal entropy of a pseudo-Anosov map is bounded from above by \(\dfrac{(k+1)\log(k+3)}{|\chi(S)|}\) up to a constant multiple when the rank of the first homology of the mapping torus is \(k+1\) and \(k, g, n\) satisfy a certain assumption. This is a partial generalization of precedent works of Tsai and Agol-Leininger-Margalit.

2020 Mathematics Subject Classification.   37E30, 57M99

Key words and phrases.   Fibered \(3\)-manifold, homology, pseudo-Anosov map, topological entropy


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.57.2.09


References:

  1. I. Agol, C. J. Leininger and D. Margalit, Pseudo-Anosov stretch factors and homology of mapping tori, J. Lond. Math. Soc. (2) 93 (2016), 664–682.
    MathSciNet    CrossRef

  2. H. Baik, E. Kin, H. Shin and C. Wu, Asymptotic translation lengths and normal generation for pseudo-Anosov monodromies of fibered 3-manifolds, arXiv preprint arXiv:1909.00974, 2019.

  3. D. Cooper, S. Tillmann, and W. Worden. The Thurston norm via spun-normal immersions, arXiv preprint arXiv:2109.04498, 2021.

  4. J. Ellenberg, Pseudo-Anosov puzzle 2: homology rank and dilatation, quomodocumque, 2010.

  5. B. Farb, C. J. Leininger and D. Margalit, The lower central series and pseudo-Anosov dilatations, Amer. J. Math. 130 (2008), 799–827.
    MathSciNet    CrossRef

  6. B. Farb and D. Margalit, A primer on mapping class groups, Princeton University Press, Princeton, 2012.
    MathSciNet

  7. A. Fathi, F. Laudenbach, and V. Poénaru. Travaux de Thurston sur les surfaces, Société Mathématique de France, Paris, 1979.
    MathSciNet

  8. D. Fried, Flow equivalence, hyperbolic systems and a new zeta function for flows, Comment. Math. Helv. 57 (1982), 237–259.
    MathSciNet    CrossRef

  9. D. Fried, Transitive anosov flows and pseudo-anosov maps, Topology 22 (1983), 299–303.
    MathSciNet    CrossRef

  10. D. Gabai, The murasugi sum is a natural geometric operation, in Low-dimensional topology (San Francisco, Calif., 1981), AMS, Providence, 1983, 131–143.
    MathSciNet    CrossRef

  11. D. Gabai, The murasugi sum is a natural geometric operation II, in Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982), AMS, Providence, 1985, 93–100.
    MathSciNet    CrossRef

  12. E. Kin, Dynamics of the monodromies of the fibrations on the magic 3-manifold, New York J. Math 21 (2015), 547–599.
    MathSciNet    Link

  13. E. Kin and M. Takasawa, Pseudo-Anosov braids with small entropy and the magic \(3\)-manifold, Comm. Anal. Geom. 19 (2011), 705–758.
    MathSciNet    CrossRef

  14. S. Kojima and G. McShane, Normalized entropy versus volume for pseudo-Anosovs, Geom. Topol. 22 (2018), 2403–2426.
    MathSciNet    CrossRef

  15. C. J. Leininger, Surgeries on one component of the whitehead link are virtually fibered, Topology 41 (2002), 307–320.
    MathSciNet    CrossRef

  16. W. D. Neumann and A. W. Reid, Arithmetic of hyperbolic manifolds, in Topology'90, de Gruyter, Berlin, 2011, 273–310.
    MathSciNet

  17. R. C. Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991), 443–450.
    MathSciNet    CrossRef

  18. B. Strenner, Fibrations of 3-manifolds and asymptotic translation length in the arc complex, arXiv preprint arXiv:1810.07236, 2018.

  19. W. P. Thurston, A norm for the homology of 3-manifolds. Mem. Amer. Math. Soc. 59 (1986), i–vi and 99–130.
    MathSciNet

  20. W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), 417–431.
    MathSciNet    CrossRef

  21. C.-Y. Tsai, The asymptotic behavior of least pseudo-Anosov dilatations, Geom. Topol. 13 (2009), 2253–2278.
    MathSciNet    CrossRef

  22. A. D. Valdivia, Sequences of pseudo-anosov mapping classes and their asymptotic behavior, New York J. Math 18 (2012), 609–620.
    MathSciNet    Link

  23. M. Yazdi, Pseudo-Anosov maps with small stretch factors on punctured surfaces, Algebr. Geom. Topol. 20 (2020), 2095–2128.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page