Glasnik Matematicki, Vol. 57, No. 2 (2022), 291-312. \( \)
TOPOLOGICAL ENTROPY OF PSEUDO-ANOSOV MAPS ON PUNCTURED SURFACES VS. HOMOLOGY OF MAPPING TORI
Hyungryul Baik, Juhun Baik, Changsub Kim and Philippe Tranchida
Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
e-mail:hrbaik@kaist.ac.kr
Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
e-mail:jhbaik@kaist.ac.kr
Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
e-mail:kcs55505@kaist.ac.kr
Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
e-mail:tranchida.philippe@gmail.com
Abstract.
We investigate the relation between the topological entropy of pseudo-Anosov maps on surfaces with punctures and the rank of the first homology of their mapping tori. On the surface \(S\) of genus \(g\) with \(n\) punctures, we show that the minimal entropy of a pseudo-Anosov map is bounded from above by \(\dfrac{(k+1)\log(k+3)}{|\chi(S)|}\) up to a constant multiple when the rank of the first homology of the mapping torus is \(k+1\) and \(k, g, n\) satisfy a certain assumption. This is a partial generalization of precedent works of Tsai and Agol-Leininger-Margalit.
2020 Mathematics Subject Classification. 37E30, 57M99
Key words and phrases. Fibered \(3\)-manifold, homology, pseudo-Anosov map, topological entropy
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.57.2.09
References:
-
I. Agol, C. J. Leininger and D. Margalit, Pseudo-Anosov stretch factors and homology of mapping tori, J. Lond. Math. Soc. (2) 93 (2016), 664–682.
MathSciNet
CrossRef
-
H. Baik, E. Kin, H. Shin and C. Wu, Asymptotic translation lengths and normal generation for pseudo-Anosov monodromies of fibered 3-manifolds, arXiv preprint arXiv:1909.00974, 2019.
-
D. Cooper, S. Tillmann, and W. Worden. The Thurston norm via spun-normal immersions, arXiv preprint arXiv:2109.04498, 2021.
-
J. Ellenberg, Pseudo-Anosov puzzle 2: homology rank and dilatation, quomodocumque, 2010.
-
B. Farb, C. J. Leininger and D. Margalit, The lower central series and pseudo-Anosov dilatations, Amer. J. Math. 130 (2008), 799–827.
MathSciNet
CrossRef
-
B. Farb and D. Margalit, A primer on mapping class groups, Princeton University Press, Princeton, 2012.
MathSciNet
-
A. Fathi, F. Laudenbach, and V. Poénaru. Travaux de Thurston sur les surfaces, Société Mathématique de France, Paris, 1979.
MathSciNet
-
D. Fried, Flow equivalence, hyperbolic systems and a new zeta function for flows, Comment. Math. Helv. 57 (1982), 237–259.
MathSciNet
CrossRef
-
D. Fried, Transitive anosov flows and pseudo-anosov maps, Topology 22 (1983), 299–303.
MathSciNet
CrossRef
-
D. Gabai, The murasugi sum is a natural geometric operation, in Low-dimensional topology (San Francisco, Calif., 1981), AMS, Providence, 1983, 131–143.
MathSciNet
CrossRef
-
D. Gabai, The murasugi sum is a natural geometric operation II, in Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982), AMS, Providence, 1985, 93–100.
MathSciNet
CrossRef
-
E. Kin, Dynamics of the monodromies of the fibrations on the magic 3-manifold, New York J. Math 21 (2015), 547–599.
MathSciNet
Link
-
E. Kin and M. Takasawa, Pseudo-Anosov braids with small entropy and the magic \(3\)-manifold, Comm. Anal. Geom. 19 (2011), 705–758.
MathSciNet
CrossRef
-
S. Kojima and G. McShane, Normalized entropy versus volume for pseudo-Anosovs, Geom. Topol. 22 (2018), 2403–2426.
MathSciNet
CrossRef
-
C. J. Leininger, Surgeries on one component of the whitehead link are virtually fibered, Topology 41 (2002), 307–320.
MathSciNet
CrossRef
-
W. D. Neumann and A. W. Reid, Arithmetic of hyperbolic manifolds, in Topology'90, de Gruyter, Berlin, 2011, 273–310.
MathSciNet
-
R. C. Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991), 443–450.
MathSciNet
CrossRef
-
B. Strenner, Fibrations of 3-manifolds and asymptotic translation length in the arc complex, arXiv preprint arXiv:1810.07236, 2018.
-
W. P. Thurston, A norm for the homology of 3-manifolds. Mem. Amer. Math. Soc. 59 (1986), i–vi and 99–130.
MathSciNet
-
W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), 417–431.
MathSciNet
CrossRef
-
C.-Y. Tsai, The asymptotic behavior of least pseudo-Anosov dilatations, Geom. Topol. 13 (2009), 2253–2278.
MathSciNet
CrossRef
-
A. D. Valdivia, Sequences of pseudo-anosov mapping classes and their asymptotic behavior, New York J. Math 18 (2012), 609–620.
MathSciNet
Link
-
M. Yazdi, Pseudo-Anosov maps with small stretch factors on punctured surfaces, Algebr. Geom. Topol. 20 (2020), 2095–2128.
MathSciNet
CrossRef
Glasnik Matematicki Home Page