Glasnik Matematicki, Vol. 57, No. 2 (2022), 265-280. \( \)
SOME DATKO AND BARBASHIN TYPE CHARACTERIZATIONS FOR THE UNIFORM \(h\)-INSTABILITY OF EVOLUTION FAMILIES
Tian Yue
School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, 442002 Shiyan, China
e-mail:yuet@huat.edu.cn
Abstract.
The aim of this paper is to give some Datko and Barbashin type characterizations for the uniform \(h\)-instability of evolution families in Banach spaces, by using some important sets of growth rates. We prove four characterization theorems of Datko type and two characterization theorems of Barbashin type for uniform \(h\)-instability. Variants for uniform \(h\)-instability of some well-known results in stability theory (Barbashin (1967), Datko (1972)) are obtained.
2020 Mathematics Subject Classification. 34D05, 34D20
Key words and phrases. Uniform \(h\)-instability, evolution family, growth rate, Datko type theorem, Barbashin type theorem
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.57.2.07
References:
-
E. A. Barbashin, Introduction in the theory of stability. Izd. Nauka, Moscow, Russia, 1967.
-
L. Barreira and C. Valls, Stability of nonautonomous differential equations, Springer, Berlin, 2008.
MathSciNet
CrossRef
-
L. Barreira and C. Valls, Polynomial growth rates, Nonlinear Anal. 71 (2009), 5208–5219.
MathSciNet
CrossRef
-
A. J. G. Bento and C. Silva, Stable manifolds for nonuniform polynomial dichotomies, J. Funct. Anal. 257 (2009), 122–148.
MathSciNet
CrossRef
-
A. J. G. Bento, N. Lupa, M. Megan and C. M. Silva, Integral conditions for nonuniform \(\mu\)-dichotomy on the half-line, Discrete Contin. Dyn. Syst. Ser. B 22 (2017), 3063–3077.
MathSciNet
CrossRef
-
R. Boruga and M. Megan, Datko criteria for uniform instability in Banach spaces, Stud. Univ. Babeş-Bolyai Math. 66 (2021), 115–122.
MathSciNet
CrossRef
-
R. Boruga and M. Megan, Datko type characterizations for nonuniform polynomial dichotomy, Carpathian J. Math. 37 (2021), 45–51.
MathSciNet
-
R. Boruga, M. Megan and D. M-M. Toth, Integral characterizations for uniform stability with growth rates in Banach spaces, Axioms 10 (2021), 235, 12pp.
-
C. Buşe, M. Megan, M.-S. Prajea and P. Preda, The strong variant of a Barbashin theorem on stability of solutions for non-autonomous differential equations in Banach spaces, Integral Equations Operator Theory 59 (2007), 491–500.
MathSciNet
CrossRef
-
R. Datko, Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal. 3 (1972), 428–445.
MathSciNet
CrossRef
-
R. Datko, Extending a theorem of A. M. Liapunov to Hilbert space, J. Math. Anal. Appl. 32 (1970), 610–616.
MathSciNet
CrossRef
-
D. Dragičević, A version of a theorem of R. Datko for stability in average, Systems Control Lett. 96 (2016), 1–6.
MathSciNet
CrossRef
-
D. Dragičević, Datko-Pazy conditions for nonuniform exponential stability, J. Difference Equ. Appl. 24 (2018), 344–357.
MathSciNet
CrossRef
-
D. Dragičević, Strong nonuniform behaviour: a Datko type characterization, J. Math. Anal. Appl. 459 (2018), 266–290.
MathSciNet
CrossRef
-
D. Dragičević, Barbashin-type conditions for exponential stability of linear cocycles, Monatsh. Math. 192 (2020), 813–826.
MathSciNet
CrossRef
-
P. V. Hai, On two theorems regarding exponential stability, Appl. Anal. Discrete Math. 5 (2011), 240–258.
MathSciNet
CrossRef
-
P. V. Hai, Discrete and continuous versions of Barbashin-type theorem of linear skew-evolution semiflows, Appl. Anal. 90 (2011), 1897–1907.
MathSciNet
CrossRef
-
P. V. Hai, A generalization for theorems of Datko and Barbashin type, J. Funct. Spaces (2015), Art. ID 517348, 5 pp.
MathSciNet
CrossRef
-
P. V. Hai, On the polynomial stability of evolution families, Appl. Anal. 95 (2016), 1239–1255.
MathSciNet
CrossRef
-
P. V. Hai, Polynomial stability of evolution cocycles and Banach function spaces, Bull. Belg. Math. Soc. Simon Stevin 26 (2019), 299–314.
MathSciNet
CrossRef
-
P. V. Hai, Polynomial stability and polynomial instability for skew-evolution semiflows, Results Math. 74 (2019), Paper No. 175, 19 pp.
MathSciNet
CrossRef
-
N. Lupa and L. H. Popescu, Admissible Banach function spaces and nonuniform stabilities, Mediterr. J. Math. 17 (2020), Paper No. 105, 12 pp.
MathSciNet
CrossRef
-
M. Megan and R. Boruga, Barbashin conditions for uniform instability of evolution operators, Stud. Univ. Babeş-Bolyai Math. 66 (2021), 297–305.
MathSciNet
CrossRef
-
M. Megan, A. L. Sasu and B. Sasu, Banach function spaces and exponential instability of evolution families, Arch. Math. (Brno) 39 (2003), 277–286.
MathSciNet
-
M. Megan, T. Ceauşu and M. L. Ramneanţu, Polynomial stability of evolution operators in Banach spaces, Opuscula Math. 31 (2011), 279–288.
MathSciNet
CrossRef
-
M. Megan, T. Ceauşu and A. A. Minda, On Barreira-Valls polynomial stability of evolution operators in Banach spaces, Electron. J. Qual. Theory Differ. Equ. (2011), No. 33, 10 pp.
MathSciNet
CrossRef
-
C.-L. Mihiţ, On uniform \(h\)-stability of evolution operators in Banach spaces, Theory Appl. Math. Comput. Sci. 6 (2016), 19–27.
MathSciNet
-
A. Pazy, On the applicability of Lyapunov's theorem in Hilbert space, SIAM J. Math. Anal. 3 (1972), 291–294.
MathSciNet
CrossRef
-
M. Pinto, Perturbations of asymptotically stable differential systems, Analysis 4 (1984), 161–175.
MathSciNet
CrossRef
-
C. Preda, P. Preda and A. Craciunescu, A version of a theorem of R. Datko for nonuniform exponential contractions, J. Math. Anal. Appl. 385 (2012), 572–581.
MathSciNet
CrossRef
-
C. Preda, S. Rămneanţu and R. Mureşan, Perron type theorems for skew-evolution semiflows, Glas. Mat. Ser. III 51(71) (2016), 379–390.
MathSciNet
CrossRef
-
M. L. Rămneanţu, M. Megan and T. Ceauşu, Polynomial instability of evolution operators in Banach spaces, Carpathian J. Math. 29 (2013), 77–83.
MathSciNet
Glasnik Matematicki Home Page