Glasnik Matematicki, Vol. 57, No. 2 (2022), 265-280. \( \)

SOME DATKO AND BARBASHIN TYPE CHARACTERIZATIONS FOR THE UNIFORM \(h\)-INSTABILITY OF EVOLUTION FAMILIES

Tian Yue

School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, 442002 Shiyan, China
e-mail:yuet@huat.edu.cn


Abstract.   The aim of this paper is to give some Datko and Barbashin type characterizations for the uniform \(h\)-instability of evolution families in Banach spaces, by using some important sets of growth rates. We prove four characterization theorems of Datko type and two characterization theorems of Barbashin type for uniform \(h\)-instability. Variants for uniform \(h\)-instability of some well-known results in stability theory (Barbashin (1967), Datko (1972)) are obtained.

2020 Mathematics Subject Classification.   34D05, 34D20

Key words and phrases.   Uniform \(h\)-instability, evolution family, growth rate, Datko type theorem, Barbashin type theorem


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.57.2.07


References:

  1. E. A. Barbashin, Introduction in the theory of stability. Izd. Nauka, Moscow, Russia, 1967.

  2. L. Barreira and C. Valls, Stability of nonautonomous differential equations, Springer, Berlin, 2008.
    MathSciNet    CrossRef   

  3. L. Barreira and C. Valls, Polynomial growth rates, Nonlinear Anal. 71 (2009), 5208–5219.
    MathSciNet    CrossRef   

  4. A. J. G. Bento and C. Silva, Stable manifolds for nonuniform polynomial dichotomies, J. Funct. Anal. 257 (2009), 122–148.
    MathSciNet    CrossRef   

  5. A. J. G. Bento, N. Lupa, M. Megan and C. M. Silva, Integral conditions for nonuniform \(\mu\)-dichotomy on the half-line, Discrete Contin. Dyn. Syst. Ser. B 22 (2017), 3063–3077.
    MathSciNet    CrossRef   

  6. R. Boruga and M. Megan, Datko criteria for uniform instability in Banach spaces, Stud. Univ. Babeş-Bolyai Math. 66 (2021), 115–122.
    MathSciNet    CrossRef   

  7. R. Boruga and M. Megan, Datko type characterizations for nonuniform polynomial dichotomy, Carpathian J. Math. 37 (2021), 45–51.
    MathSciNet

  8. R. Boruga, M. Megan and D. M-M. Toth, Integral characterizations for uniform stability with growth rates in Banach spaces, Axioms 10 (2021), 235, 12pp.

  9. C. Buşe, M. Megan, M.-S. Prajea and P. Preda, The strong variant of a Barbashin theorem on stability of solutions for non-autonomous differential equations in Banach spaces, Integral Equations Operator Theory 59 (2007), 491–500.
    MathSciNet    CrossRef   

  10. R. Datko, Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J. Math. Anal. 3 (1972), 428–445.
    MathSciNet    CrossRef   

  11. R. Datko, Extending a theorem of A. M. Liapunov to Hilbert space, J. Math. Anal. Appl. 32 (1970), 610–616.
    MathSciNet    CrossRef   

  12. D. Dragičević, A version of a theorem of R. Datko for stability in average, Systems Control Lett. 96 (2016), 1–6.
    MathSciNet    CrossRef   

  13. D. Dragičević, Datko-Pazy conditions for nonuniform exponential stability, J. Difference Equ. Appl. 24 (2018), 344–357.
    MathSciNet    CrossRef   

  14. D. Dragičević, Strong nonuniform behaviour: a Datko type characterization, J. Math. Anal. Appl. 459 (2018), 266–290.
    MathSciNet    CrossRef   

  15. D. Dragičević, Barbashin-type conditions for exponential stability of linear cocycles, Monatsh. Math. 192 (2020), 813–826.
    MathSciNet    CrossRef   

  16. P. V. Hai, On two theorems regarding exponential stability, Appl. Anal. Discrete Math. 5 (2011), 240–258.
    MathSciNet    CrossRef   

  17. P. V. Hai, Discrete and continuous versions of Barbashin-type theorem of linear skew-evolution semiflows, Appl. Anal. 90 (2011), 1897–1907.
    MathSciNet    CrossRef   

  18. P. V. Hai, A generalization for theorems of Datko and Barbashin type, J. Funct. Spaces (2015), Art. ID 517348, 5 pp.
    MathSciNet    CrossRef   

  19. P. V. Hai, On the polynomial stability of evolution families, Appl. Anal. 95 (2016), 1239–1255.
    MathSciNet    CrossRef   

  20. P. V. Hai, Polynomial stability of evolution cocycles and Banach function spaces, Bull. Belg. Math. Soc. Simon Stevin 26 (2019), 299–314.
    MathSciNet    CrossRef   

  21. P. V. Hai, Polynomial stability and polynomial instability for skew-evolution semiflows, Results Math. 74 (2019), Paper No. 175, 19 pp.
    MathSciNet    CrossRef   

  22. N. Lupa and L. H. Popescu, Admissible Banach function spaces and nonuniform stabilities, Mediterr. J. Math. 17 (2020), Paper No. 105, 12 pp.
    MathSciNet    CrossRef   

  23. M. Megan and R. Boruga, Barbashin conditions for uniform instability of evolution operators, Stud. Univ. Babeş-Bolyai Math. 66 (2021), 297–305.
    MathSciNet    CrossRef   

  24. M. Megan, A. L. Sasu and B. Sasu, Banach function spaces and exponential instability of evolution families, Arch. Math. (Brno) 39 (2003), 277–286.
    MathSciNet

  25. M. Megan, T. Ceauşu and M. L. Ramneanţu, Polynomial stability of evolution operators in Banach spaces, Opuscula Math. 31 (2011), 279–288.
    MathSciNet    CrossRef   

  26. M. Megan, T. Ceauşu and A. A. Minda, On Barreira-Valls polynomial stability of evolution operators in Banach spaces, Electron. J. Qual. Theory Differ. Equ. (2011), No. 33, 10 pp.
    MathSciNet    CrossRef   

  27. C.-L. Mihiţ, On uniform \(h\)-stability of evolution operators in Banach spaces, Theory Appl. Math. Comput. Sci. 6 (2016), 19–27.
    MathSciNet

  28. A. Pazy, On the applicability of Lyapunov's theorem in Hilbert space, SIAM J. Math. Anal. 3 (1972), 291–294.
    MathSciNet    CrossRef   

  29. M. Pinto, Perturbations of asymptotically stable differential systems, Analysis 4 (1984), 161–175.
    MathSciNet    CrossRef   

  30. C. Preda, P. Preda and A. Craciunescu, A version of a theorem of R. Datko for nonuniform exponential contractions, J. Math. Anal. Appl. 385 (2012), 572–581.
    MathSciNet    CrossRef   

  31. C. Preda, S. Rămneanţu and R. Mureşan, Perron type theorems for skew-evolution semiflows, Glas. Mat. Ser. III 51(71) (2016), 379–390.
    MathSciNet    CrossRef   

  32. M. L. Rămneanţu, M. Megan and T. Ceauşu, Polynomial instability of evolution operators in Banach spaces, Carpathian J. Math. 29 (2013), 77–83.
    MathSciNet

Glasnik Matematicki Home Page