Glasnik Matematicki, Vol. 57, No. 2 (2022), 251-264. \( \)

ON A GENERALIZATION OF SOME INSTABILITY RESULTS FOR RICCATI EQUATIONS VIA NONASSOCIATIVE ALGEBRAS

Hamza Boujemaa and Brigita Ferčec

Département de Mathématiques, Faculté des Sciences de Rabat, Mohammed V University in Rabat, 1014RP Rabat, Rabat, Morocco
e-mail:hamzaboujemaa@gmail.com

Faculty of Energy Technology, University of Maribor, Hočevarjev trg 1, 8270 Krško, Slovenia, &, Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska 3, SI-2000 Maribor, Slovenia, &, Faculty of natural sciences and mathematics, University of Maribor, Koroška c. 160, 2000 Maribor, Slovenia
e-mail:brigita.fercec@um.si


Abstract.   In [28], for any real non associative algebra of dimension \(m\geq2\), having \(k\) linearly independent nilpotent elements \(n_{1}\), \(n_{2}\), …, \(n_{k},\) \(1\leq k\leq m-1\), Mencinger and Zalar defined near idempotents and near nilpotents associated to \(n_{1}\), \(n_{2}\), …, \(n_{k}\). Assuming \(\mathcal{N}_{k}\mathcal{N}_{k}=\left\{ 0\right\}\), where \(\mathcal{N} _{k}=\operatorname*{span}\left\{ n_{1},n_{2},\ldots,n_{k}\right\} \), they showed that if there exists a near idempotent or a near nilpotent, called \(u\), associated to \(n_{1},n_{2},\ldots,n_{k}\) verifying \(n_{i}u\in\mathbb{R}n_{i},\) for \(1\leq i\leq k\), then any nilpotent element in \(\mathcal{N}_{k}\) is unstable. They also raised the question of extending their results to cases where \(\mathcal{N}_{k}\mathcal{N}_{k}\not =\left\{ 0\right\} \) with \(\mathcal{N}_{k}\mathcal{N}_{k}\subset\mathcal{N}_{k}\mathcal{\ }\)and to cases where \(\mathcal{N}_{k}\mathcal{N}_{k} \not\subset \mathcal{N}_{k}.\) In this paper, positive answers are emphasized and in some cases under the weaker conditions \(n_{i}u\in\mathcal{N}_{k}\). In addition, we characterize all such algebras in dimension 3.

2020 Mathematics Subject Classification.   34A34, 17A99

Key words and phrases.   Quadratic differential systems, non-associative algebra, singular points, stability


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.57.2.06


References:

  1. Z. Balanov and Y. Krasnov, Complex structures in algebra, topology and differential equations, Georgian Math. J. 21 (2014), 249–260.
    MathSciNet    CrossRef

  2. H. Boujemaa and S. El Qotbi, On unbounded polynomial dynamical systems, Glas. Mat. Ser. III 53(73) (2018), 343–357.
    MathSciNet    CrossRef   

  3. H. Boujemaa, S. El Qotbi and H. Rouiouih, Stability of critical points of quadratic homogeneous dynamical systems, Glas. Mat. Ser. III 51(71) (2016), 165–173.
    MathSciNet    CrossRef   

  4. I. Burdujan, Automorphisms and derivations of homogeneous quadratic differential systems, ROMAI J. 6 (2010), 15–28.
    MathSciNet

  5. I. Burdujan, Classification of quadratic differential systems on \(\Bbb R^3\) having a nilpotent of order 3 derivation, Libertas Math. 29 (2009), 47–64.
    MathSciNet

  6. I. Burdujan, A class of commutative algebras and their applications in Lie triple system theory, ROMAI J. 3 (2007), 15–39.
    MathSciNet

  7. C. B. Collins, Algebraic classification of homogeneous polynomial vector fields in the plane, Japan J. Indust. Appl. Math. 13 (1996), 63–91.
    MathSciNet    CrossRef   

  8. C. B. Collins, Two-dimensional homogeneous polynomial vector fields with common factors, J. Math. Anal. Appl. 181 (1994), 836–863.
    MathSciNet    CrossRef   

  9. M. W. Hirsch and S. Smale, Differential equations, dynamical systems, and linear algebra, Academic Press, New York-London, 1974.
    MathSciNet

  10. M. K. Kinyon and A. A. Sagle, Differential systems and algebras, in: Differential equations, dynamical systems, and control science, Dekker, New York, 1994, 115–141.
    MathSciNet

  11. M. K. Kinyon and A. A. Sagle, Quadratic dynamical systems and algebras, J. Differential Equations 117 (1995), 67–126.
    MathSciNet    CrossRef   

  12. Y. Krasnov and I. Messika, Differential and integral equations in algebra, Funct. Differ. Equ. 21 (2014), 137–146.
    MathSciNet

  13. Y. Krasnov, Properties of ODEs and PDEs in algebras, Complex Anal. Oper. Theory 7 (2013), 623–634.
    MathSciNet    CrossRef   

  14. Y. Krasnov and V. G. Tkachev, Idempotent geometry in generic algebras, Adv. Appl. Clifford Algebr. 28 (2018), Paper No. 84, 14.
    MathSciNet    CrossRef   

  15. Y. Krasnov and V. G. Tkachev, Variety of idempotents in nonassociative algebras, in: Topics in Clifford analysis—special volume in honor of Wolfgang Sprößig, Birkhäuser/Springer, Cham, [2019] 2019, 405–436.
    MathSciNet    CrossRef   

  16. M. Kutnjak and M. Mencinger, A family of completely periodic quadratic discrete dynamical system, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008), 1425–1433.
    MathSciNet    CrossRef   

  17. L. Markus, Quadratic Differential Equations and Nonassociative Algebras, Ann. Math. Studies 45 (1960), 185–213.

  18. M. Nadjafikhah and M. Mirafzal, Classification the integral curves of a second degree homogeneous ODE, Math. Sci. Q. J. 4 (2010), 371–381.
    MathSciNet

  19. M. Mencinger, On quadratizations of homogeneous polynomial systems of ODEs, Glas. Mat. Ser. III 50(70) (2015), 163–182.
    MathSciNet    CrossRef   

  20. M. Mencinger, On algebraic approach in quadratic systems, Int. J. Math. Math. Sci. (2011), Art. ID 230939, 12.
    MathSciNet    CrossRef   

  21. M. Mencinger and M. Kutnjak, The dynamics of NQ-systems in the plane, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 19 (2009), 117–133.
    MathSciNet    CrossRef   

  22. M. Mencinger and B. Zalar, A class of nonassociative algebras arising from quadratic ODEs, Comm. Algebra 33 (2005), 807–828.
    MathSciNet    CrossRef   

  23. M. Mencinger, On stability of the origin in quadratic systems of ODEs via Markus approach, Nonlinearity 16 (2003), 201–218.
    MathSciNet    CrossRef   

  24. M. Mencinger, Stability analysis of critical points in quadratic systems in \(\Bbb R^3\) which contain a plane of critical points, Progr. Theoret. Phys. Suppl. 150, 2003, 388–392.
    MathSciNet    CrossRef   

  25. M. Mencinger, On the stability of Riccati differential equation \(\dot X=TX+Q(X)\) in \(\Bbb R^n\), Proc. Edinb. Math. Soc. (2) 45 (2002), 601–615.
    MathSciNet    CrossRef   

  26. V. G. Tkachev, Spectral properties of nonassociative algebras and breaking regularity for nonlinear elliptic type PDEs, Algebra i Analiz 31 (2019), 51–74.
    MathSciNet    CrossRef   

  27. S. Walcher, Algebras and differential equations, Hadronic Press, Inc., Palm Harbor, FL, 1991.
    MathSciNet

  28. B. Zalar and M. Mencinger, Near-idempotents, near-nilpotents and stability of critical points for Riccati equations, Glas. Mat. Ser. III 53(73) (2018), 331–342.
    MathSciNet    CrossRef   

Glasnik Matematicki Home Page