Glasnik Matematicki, Vol. 57, No. 2 (2022), 251-264. \( \)
ON A GENERALIZATION OF SOME INSTABILITY RESULTS FOR RICCATI EQUATIONS VIA NONASSOCIATIVE ALGEBRAS
Hamza Boujemaa and Brigita Ferčec
Département de Mathématiques, Faculté des Sciences de Rabat, Mohammed V University in Rabat, 1014RP Rabat, Rabat, Morocco
e-mail:hamzaboujemaa@gmail.com
Faculty of Energy Technology, University of Maribor, Hočevarjev trg 1, 8270 Krško, Slovenia, &, Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska 3, SI-2000 Maribor, Slovenia, &, Faculty of natural sciences and mathematics, University of Maribor, Koroška c. 160, 2000 Maribor, Slovenia
e-mail:brigita.fercec@um.si
Abstract.
In [28], for any real non associative algebra of dimension \(m\geq2\),
having \(k\) linearly independent nilpotent elements \(n_{1}\), \(n_{2}\), …,
\(n_{k},\) \(1\leq k\leq m-1\), Mencinger and Zalar defined near idempotents and
near nilpotents associated to \(n_{1}\), \(n_{2}\), …, \(n_{k}\). Assuming
\(\mathcal{N}_{k}\mathcal{N}_{k}=\left\{ 0\right\}\), where \(\mathcal{N}
_{k}=\operatorname*{span}\left\{ n_{1},n_{2},\ldots,n_{k}\right\} \), they
showed that if there exists a near idempotent or a near nilpotent, called \(u\),
associated to \(n_{1},n_{2},\ldots,n_{k}\) verifying \(n_{i}u\in\mathbb{R}n_{i},\)
for \(1\leq i\leq k\), then any nilpotent element in \(\mathcal{N}_{k}\) is
unstable. They also raised the question of extending their results to cases
where \(\mathcal{N}_{k}\mathcal{N}_{k}\not =\left\{ 0\right\} \) with
\(\mathcal{N}_{k}\mathcal{N}_{k}\subset\mathcal{N}_{k}\mathcal{\ }\)and to cases
where \(\mathcal{N}_{k}\mathcal{N}_{k} \not\subset \mathcal{N}_{k}.\)
In this paper, positive answers are emphasized and in some cases under the
weaker conditions \(n_{i}u\in\mathcal{N}_{k}\). In addition, we characterize all
such algebras in dimension 3.
2020 Mathematics Subject Classification. 34A34, 17A99
Key words and phrases. Quadratic differential systems, non-associative algebra,
singular points, stability
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.57.2.06
References:
-
Z. Balanov and Y. Krasnov, Complex structures in algebra, topology and differential equations, Georgian Math. J. 21 (2014), 249–260.
MathSciNet
CrossRef
-
H. Boujemaa and S. El Qotbi, On unbounded polynomial dynamical systems, Glas. Mat. Ser. III 53(73) (2018), 343–357.
MathSciNet
CrossRef
-
H. Boujemaa, S. El Qotbi and H. Rouiouih, Stability of critical points of quadratic homogeneous dynamical systems, Glas. Mat. Ser. III 51(71) (2016), 165–173.
MathSciNet
CrossRef
-
I. Burdujan, Automorphisms and derivations of homogeneous quadratic differential systems, ROMAI J. 6 (2010), 15–28.
MathSciNet
-
I. Burdujan, Classification of quadratic differential systems on \(\Bbb R^3\) having a nilpotent of order 3 derivation, Libertas Math. 29 (2009), 47–64.
MathSciNet
-
I. Burdujan, A class of commutative algebras and their applications in Lie triple system theory, ROMAI J. 3 (2007), 15–39.
MathSciNet
-
C. B. Collins, Algebraic classification of homogeneous polynomial vector fields in the plane, Japan J. Indust. Appl. Math. 13 (1996), 63–91.
MathSciNet
CrossRef
-
C. B. Collins, Two-dimensional homogeneous polynomial vector fields with common factors, J. Math. Anal. Appl. 181 (1994), 836–863.
MathSciNet
CrossRef
-
M. W. Hirsch and S. Smale, Differential equations, dynamical systems, and linear algebra, Academic Press, New York-London, 1974.
MathSciNet
-
M. K. Kinyon and A. A. Sagle, Differential systems and algebras, in: Differential equations, dynamical systems, and control science, Dekker, New York, 1994, 115–141.
MathSciNet
-
M. K. Kinyon and A. A. Sagle, Quadratic dynamical systems and algebras, J. Differential Equations 117 (1995), 67–126.
MathSciNet
CrossRef
-
Y. Krasnov and I. Messika, Differential and integral equations in algebra, Funct. Differ. Equ. 21 (2014), 137–146.
MathSciNet
-
Y. Krasnov, Properties of ODEs and PDEs in algebras, Complex Anal. Oper. Theory 7 (2013), 623–634.
MathSciNet
CrossRef
-
Y. Krasnov and V. G. Tkachev, Idempotent geometry in generic algebras, Adv. Appl. Clifford Algebr. 28 (2018), Paper No. 84, 14.
MathSciNet
CrossRef
-
Y. Krasnov and V. G. Tkachev, Variety of idempotents in nonassociative algebras, in: Topics in Clifford analysis—special volume in honor of Wolfgang Sprößig, Birkhäuser/Springer, Cham, [2019] 2019, 405–436.
MathSciNet
CrossRef
-
M. Kutnjak and M. Mencinger, A family of completely periodic quadratic discrete dynamical system, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008), 1425–1433.
MathSciNet
CrossRef
-
L. Markus, Quadratic Differential Equations and Nonassociative Algebras, Ann. Math. Studies 45 (1960), 185–213.
-
M. Nadjafikhah and M. Mirafzal, Classification the integral curves of a second degree homogeneous ODE, Math. Sci. Q. J. 4 (2010), 371–381.
MathSciNet
-
M. Mencinger, On quadratizations of homogeneous polynomial systems of ODEs, Glas. Mat. Ser. III 50(70) (2015), 163–182.
MathSciNet
CrossRef
-
M. Mencinger, On algebraic approach in quadratic systems, Int. J. Math. Math. Sci. (2011), Art. ID 230939, 12.
MathSciNet
CrossRef
-
M. Mencinger and M. Kutnjak, The dynamics of NQ-systems in the plane, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 19 (2009), 117–133.
MathSciNet
CrossRef
-
M. Mencinger and B. Zalar, A class of nonassociative algebras arising from quadratic ODEs, Comm. Algebra 33 (2005), 807–828.
MathSciNet
CrossRef
-
M. Mencinger, On stability of the origin in quadratic systems of ODEs via Markus approach, Nonlinearity 16 (2003), 201–218.
MathSciNet
CrossRef
-
M. Mencinger, Stability analysis of critical points in quadratic systems in \(\Bbb R^3\) which contain a plane of critical points, Progr. Theoret. Phys. Suppl. 150, 2003, 388–392.
MathSciNet
CrossRef
-
M. Mencinger, On the stability of Riccati differential equation \(\dot X=TX+Q(X)\) in \(\Bbb R^n\), Proc. Edinb. Math. Soc. (2) 45 (2002), 601–615.
MathSciNet
CrossRef
-
V. G. Tkachev, Spectral properties of nonassociative algebras and breaking regularity for nonlinear elliptic type PDEs, Algebra i Analiz 31 (2019), 51–74.
MathSciNet
CrossRef
-
S. Walcher, Algebras and differential equations, Hadronic Press, Inc., Palm Harbor, FL, 1991.
MathSciNet
-
B. Zalar and M. Mencinger, Near-idempotents, near-nilpotents and stability of critical points for Riccati equations, Glas. Mat. Ser. III 53(73) (2018), 331–342.
MathSciNet
CrossRef
Glasnik Matematicki Home Page