Glasnik Matematicki, Vol. 57, No. 2 (2022), 239-250. \( \)
THE HAUSDORFF DIMENSION OF DIRECTIONAL EDGE ESCAPING POINTS SET
Xiaojie Huang, Zhixiu Liu and Yuntong Li
Department of Science, Nanchang Institute of Technology, 330099 Nanchang, China
e-mail:359536229@qq.com
Department of Science, Nanchang Institute of Technology, 330099 Nanchang, China
e-mail:270144355@qq.com
Department of Basic Courses, Shaanxi Railway Institute, 714000 Weinan, China
e-mail:liyuntong2005@sohu.com
Abstract.
In this paper, we define the directional edge escaping points set of function iteration under a given plane partition and then prove that the upper bound of Hausdorff dimension of the directional edge escaping points set of \(S(z)=a e^{z}+b e^{-z}\), where \(a, b\in \mathbb{C}\) and \(|a|^{2}+|b|^{2}\neq 0\), is no more than 1.
2020 Mathematics Subject Classification. 30D05, 37F10, 37F35
Key words and phrases. Directional edge escaping points set, plane partition, function iteration, exponential function, Hausdorff dimension
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.57.2.05
References:
-
M. Bailesteanu, H. V. Balan and D. Schleicher, Hausdorff dimension of exponential parameter rays and their endpoints, Nonlinearity 21 (2008), 113–120.
MathSciNet
CrossRef
-
C. J. Bishop, A transcendental Julia set of dimension 1, Invent. Math. 212 (2018), 407–460.
MathSciNet
CrossRef
-
R. L. Devaney and M. Krych, Dynamics of \(e^{z}\), Ergodic Theory Dynam. Systems 4 (1984), 35–52.
MathSciNet
CrossRef
-
A. E. Eremenko, On the iteration of entire functions, in Dynamical systems and ergodic theory, PWN, Warsaw, 1989, 339–345.
MathSciNet
-
K. Falconer, Fractal geometry. Mathematical foundations and applications, Wiley Publishing, Chichester, 1990.
MathSciNet
-
M. Förster and D. Schleiher, Parameter rays in the space of exponential maps, Ergodic Theory Dynam. Systems 29 (2009), 515–544.
MathSciNet
CrossRef
-
X. J. Huang and W. Y. Qiu, The dimension paradox in parameter space of cosine family, Chinese Ann. Math. Ser. B 41 (2020), 645–656.
MathSciNet
CrossRef
-
B. Karpińska, Hausdorff dimension of the hairs without endpoints for \(\lambda \exp(z)\), C. R. Acad. Sci. Paris Sér. I Math 328 (1999), 1039–1044.
MathSciNet
CrossRef
-
B. Karpińska, Area and Hausdorff dimension of the set of accessible points of the Julia sets of \(\lambda e^z\) and \(\lambda \sin(z)\), Fund. Math. 159 (1999), 269–287.
MathSciNet
CrossRef
-
C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Trans. Amer. Math. Soc. 300 (1987), 329–342.
MathSciNet
CrossRef
-
F. C. Moon, Chaotic and fractal dynamics, Wiley Publishing, New York, 1992.
MathSciNet
CrossRef
-
W. Y. Qiu, Hausdorff Dimension of the \(M\)-Set of \(\lambda \exp(z)\), Acta Math. Sin. (N.S.) 10 (1994), 362–368.
MathSciNet
CrossRef
-
G. Rottenfusser and D. Schleicher, Escaping points of the cosine family, in Transcendental dynamics and complex analysis, Cambridge Univ. Press, Cambridge, 2008, 396–424.
MathSciNet
CrossRef
-
L. Rempe, D. Schleicher and M. Förster, Classification of escaping exponential maps, Proc. Amer. Math. Soc. 136 (2008), 651–663.
MathSciNet
CrossRef
-
D. Schleicher, The dynamical fine structure of iterated cosine maps and a dimension paradox, Duke Math. J. 136 (2007), 343–356.
MathSciNet
CrossRef
-
D. Schleicher and J. Zimmer, Escaping points of exponential maps, J. London Math. Soc. (2) 67 (2003), 380–400.
MathSciNet
CrossRef
-
G. M. Stallard, The Hausdorff dimension of Julia sets of entire functions. III, Math. Proc. Cambridge Philos. Soc. 122 (1997), 223–244.
MathSciNet
CrossRef
-
G. M. Stallard, The Hausdorff dimension of Julia sets of entire functions. IV, J. London Math. Soc. (2) 61 (2000), 471–488.
MathSciNet
CrossRef
-
T. Tian, Parameter rays for the cosine family, J. Fudan Univ. Nat. Sci. 50 (2011), 10–22.
MathSciNet
Glasnik Matematicki Home Page