Glasnik Matematicki, Vol. 57, No. 2 (2022), 221-237. \( \)

FIXED POINTS OF THE SUM OF DIVISORS FUNCTION ON \({{\mathbb{F}}}_2[x]\)

Luis H. Gallardo

UMR CNRS 6205, Laboratoire de Mathématiques de Bretagne Atlantique, University of Brest, F-29238 Brest, France
e-mail:Luis.Gallardo@univ-brest.fr


Abstract.   We work on an analogue of a classical arithmetic problem over polynomials. More precisely, we study the fixed points \(F\) of the sum of divisors function \(\sigma : {\mathbb{F}}_2[x] \mapsto {\mathbb{F}}_2[x]\) (defined mutatis mutandi like the usual sum of divisors over the integers) of the form \(F := A^2 \cdot S\), \(S\) square-free, with \(\omega(S) \leq 3\), coprime with \(A\), for \(A\) even, of whatever degree, under some conditions. This gives a characterization of \(5\) of the \(11\) known fixed points of \(\sigma\) in \({\mathbb{F}}_2[x]\).

2020 Mathematics Subject Classification.   11T55, 11T06

Key words and phrases.   Cyclotomic polynomials, characteristic \(2\), Mersenne polynomials, factorization


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.57.2.04


References:

  1. S. Agou, Irréducibilité des polynômes \(f(x^{pr} -ax)\) sur un corps fini \({\mathbb{F}}_{pu^s}\), J. Reine Angew. Math., 292 (1977), 191–195.
    MathSciNet    CrossRef

  2. S. Agou, Irréducibilité des polynômes \(f(x^{p^{2r}} - a x^{p^r}-b x)\) sur un corps fini \({\mathbb{F}}_{p^s}\), J. Number Theory, 10 (1978), 64–69
    MathSciNet    CrossRef

  3. O. Ahmadi and M. S. Khosro, A note on the stability of trinomials over finite fields, Finite Fields Appl. 63 (2020), 101649, 13 pp.
    MathSciNet    CrossRef

  4. J. T. B. Beard, Jr., J. R. O'Connell, Jr. and K. I. West, Perfect polynomials over \(GF(q)\), Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 62 (1977), 283–291.
    MathSciNet

  5. J. T. B. Beard, Jr., Unitary perfect polynomials over \(GF(q)\), Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 62 (1977), 417–422.
    MathSciNet

  6. J. T. B. Beard, Jr., A. T. Bullock and M. S. Harbin, Infinitely many perfect and unitary perfect polynomials, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 63 (1978), 294–303.
    MathSciNet

  7. J. T. B. Beard, Jr., Perfect polynomials revisited, Publ. Math. 38 (1991), 5–12.
    MathSciNet

  8. J. T. B. Beard, Jr. and M. L. Link, Iterated sums of polynomial divisors, Libertas Math. 17 (1997), 111–124.
    MathSciNet

  9. F. E. Brochero-Martínez and L. Reis, Factoring polynomials of the form \(f(x^n) \in {\mathbb{F}}_q[x]\), Finite Fields Appl. 49 (2018), 166–179.
    MathSciNet    CrossRef

  10. M. C. R. Butler, The irreducible factors of \(f(x^m)\) over a finite field, J. London Math. Soc. 30 (1955), 480–482.
    MathSciNet    CrossRef

  11. E. F. Canaday, The sum of the divisors of a polynomial, Duke Math. J. 8 (1941), 721–737.
    MathSciNet    Link

  12. S. D. Cohen, On irreducible polynomials of certain types in finite fields, Proc. Cambridge Philos. Soc. 66 (1969), 335–344.
    MathSciNet    CrossRef

  13. S. D. Cohen, The irreducibility of compositions of linear polynomials over a finite field, Compositio Math. 47 (1982), 149–152.
    MathSciNet    Link

  14. U. C. Cengiz, P. Pollack and E. Treviño, Counting perfect polynomials, Finite Fields Appl. 47 (2017), 242–255.
    MathSciNet    CrossRef

  15. L. H. Gallardo and O. Rahavandrainy, On perfect polynomials over \({\mathbb{F}}_4\), Port. Math. (N. S.), 62 (2005), 109–122.
    MathSciNet

  16. L. H. Gallardo and O. Rahavandrainy, Odd perfect polynomials over \({\mathbb{F}}_2\), J. Théor. Nombres Bordeaux 19 (2007), 165–174.
    MathSciNet    Link

  17. L. H. Gallardo and O. Rahavandrainy, Perfect polynomials over \({\mathbb{F}}_4\) with less than five prime factors, Port. Math. (N. S.) 64 (2007), 21–38.
    MathSciNet    CrossRef

  18. L. H. Gallardo and O. Rahavandrainy, Perfect polynomials over \({\mathbb{F}}_3\), Int. J. Algebra 2 (2008), 477–492.
    MathSciNet

  19. L. H. Gallardo and O. Rahavandrainy, There is no odd perfect polynomial over \({\mathbb{F}}_2\) with four prime factors, Port. Math. 66 (2009), 131–145.
    MathSciNet    CrossRef

  20. L. H. Gallardo and O. Rahavandrainy, Even perfect polynomials over \({\mathbb{F}}_2\) with four prime factors, Int. J. Pure Appl. Math. 52 (2009), 301–314.
    MathSciNet

  21. L. H. Gallardo and O. Rahavandrainy, All perfect polynomials with up to four prime factors over \({\mathbb{F}}_4\), Math. Commun. 14 (2009), 47–65.
    MathSciNet

  22. L. H. Gallardo and O. Rahavandrainy, On splitting perfect polynomials over \({\mathbb{F}}_{p^2}\), Port. Math. 66 (2009), 261–273.
    MathSciNet    CrossRef

  23. L. H. Gallardo and O. Rahavandrainy, On unitary splitting perfect polynomials over \({\mathbb{F}}_{p^2}\), Math. Commun. 15 (2010), 159–176.
    MathSciNet

  24. L. H. Gallardo and O. Rahavandrainy, Unitary perfect polynomials over \({\mathbb{F}}_p\) with less than five prime factors, Funct. Approx. Comment. Math. 45 (2011), 67–78.
    MathSciNet    CrossRef

  25. L. H. Gallardo and O. Rahavandrainy, On splitting perfect polynomials over \({\mathbb{F}}_{p^p}\), Int. Electron. J. Algebra 9 (2011), 85–102.
    MathSciNet

  26. L. H. Gallardo and O. Rahavandrainy, On even (unitary) perfect polynomials over \({\mathbb{F}}_2\), Finite Fields Appl. 18 (2012), 920–932.
    MathSciNet    CrossRef

  27. L. H. Gallardo and O. Rahavandrainy, On perfect polynomials over \({\mathbb{F}}_p\) with \(p\) irreducible factors, Port. Math. 69 (2012), 283–303.
    MathSciNet    CrossRef

  28. L. H. Gallardo and O. Rahavandrainy, Perfect polynomials over \({\mathbb{F}}_p\) with \(p+1\) irreducible divisors, Acta Math. Univ. Comenian. (N.S.) 83 (2014), 93–112.
    MathSciNet    CrossRef

  29. L. H. Gallardo and O. Rahavandrainy, Characterization of sporadic perfect polynomials over \({\mathbb{F}}_2\), Funct. Approx. Comment. Math. 55 (2016), 7–21.
    MathSciNet    CrossRef

  30. L. H. Gallardo and O. Rahavandrainy, There are finitely many even perfect polynomials over \({\mathbb{F}}_p\) with \(p+1\) irreducible divisors, Acta Math. Univ. Comenian. (N.S.) 85 (2016), 261–275.
    MathSciNet

  31. L. H. Gallardo and O. Rahavandrainy, On Mersenne polynomials over \({\mathbb{F}}_{2}\), Finite Fields Appl. 59 (2019), 284–296.
    MathSciNet    CrossRef

  32. L. H. Gallardo and O. Rahavandrainy, On (unitary) perfect polynomials over \({\mathbb{F}}_2\) with only Mersenne primes as odd divisors, preprint, arXiv:1908.00106 [math.NT].

  33. L. H. Gallardo and O. Rahavandrainy, A polynomial variant of perfect numbers, J. Integer Seq. 23 (2020), Art. 20.8.6, 9 pp.
    MathSciNet

  34. L. H. Gallardo, On the equation \(\prod_{P}\Phi_3(P) = \prod_{P}P^2\) over \({\mathbb{F}}_2[x]\), Gulf J. Math. 12 (2022), 39–48.
    MathSciNet

  35. M. K. Kyuregyan, Recurrent methods for constructing irreducible polynomials over \(GF(2)\), Finite Fields Appl. 8 (2002), 52–68.
    MathSciNet    CrossRef

  36. M. K. Kyuregyan and G. H. Kyuregyan, Irreducible compositions of polynomials over finite fields, Des. Codes Cryptogr., 61 (2011), 301–314.
    MathSciNet    CrossRef

  37. R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1996.

  38. A. F. Long, Factorization of irreducible polynomials over a finite field with the substitution \(x^{q^r} -x\) for \(x\), Acta Arith. 25 (1973/74), 65–80.
    MathSciNet    CrossRef

  39. D. Panario, L. Reis and Q. Wang, Construction of irreducible polynomials through rational transformations, J. Pure Appl. Algebra 224 (2020), 106241, 17 p.
    MathSciNet    CrossRef

  40. E. L. Petersson, Über die Irreduzibilität ganzahliger Polynome nach einem Primzahlmodul, J. Reine Angew. Math. 175 (1936), 209–220.

  41. L. Reis, Factorization of a class of composed polynomials, Des. Codes Cryptogr. 87 (2019), 1657–1671.
    MathSciNet    CrossRef

  42. R. G. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), 1099–1106.
    MathSciNet    Link

Glasnik Matematicki Home Page