Glasnik Matematicki, Vol. 57, No. 2 (2022), 221-237. \( \)
FIXED POINTS OF THE SUM OF DIVISORS FUNCTION ON \({{\mathbb{F}}}_2[x]\)
Luis H. Gallardo
UMR CNRS 6205, Laboratoire de Mathématiques de Bretagne Atlantique, University of Brest, F-29238 Brest, France
e-mail:Luis.Gallardo@univ-brest.fr
Abstract.
We work on an analogue of a classical arithmetic problem over polynomials. More precisely,
we study the fixed points \(F\) of the sum of divisors function \(\sigma : {\mathbb{F}}_2[x] \mapsto {\mathbb{F}}_2[x]\)
(defined mutatis mutandi like the usual sum of divisors over the integers)
of the form \(F := A^2 \cdot S\), \(S\) square-free, with \(\omega(S) \leq 3\), coprime with \(A\), for \(A\) even, of whatever degree, under some conditions. This gives a characterization of \(5\) of the \(11\) known fixed points of \(\sigma\) in \({\mathbb{F}}_2[x]\).
2020 Mathematics Subject Classification. 11T55, 11T06
Key words and phrases. Cyclotomic polynomials, characteristic \(2\), Mersenne polynomials, factorization
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.57.2.04
References:
-
S. Agou, Irréducibilité des polynômes \(f(x^{pr} -ax)\) sur un corps fini \({\mathbb{F}}_{pu^s}\), J. Reine Angew. Math., 292 (1977), 191–195.
MathSciNet
CrossRef
-
S. Agou, Irréducibilité des polynômes \(f(x^{p^{2r}} - a x^{p^r}-b x)\) sur un corps fini \({\mathbb{F}}_{p^s}\), J. Number Theory, 10 (1978), 64–69
MathSciNet
CrossRef
-
O. Ahmadi and M. S. Khosro, A note on the stability of trinomials over finite fields, Finite Fields Appl. 63 (2020), 101649, 13 pp.
MathSciNet
CrossRef
-
J. T. B. Beard, Jr., J. R. O'Connell, Jr. and K. I. West, Perfect polynomials over \(GF(q)\), Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 62 (1977), 283–291.
MathSciNet
-
J. T. B. Beard, Jr., Unitary perfect polynomials over \(GF(q)\), Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 62 (1977), 417–422.
MathSciNet
-
J. T. B. Beard, Jr., A. T. Bullock and M. S. Harbin, Infinitely many perfect and unitary perfect polynomials, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 63 (1978), 294–303.
MathSciNet
-
J. T. B. Beard, Jr., Perfect polynomials revisited, Publ. Math. 38 (1991), 5–12.
MathSciNet
-
J. T. B. Beard, Jr. and M. L. Link, Iterated sums of polynomial divisors, Libertas Math. 17 (1997), 111–124.
MathSciNet
-
F. E. Brochero-Martínez and L. Reis, Factoring polynomials of the form \(f(x^n) \in {\mathbb{F}}_q[x]\), Finite Fields Appl. 49 (2018), 166–179.
MathSciNet
CrossRef
-
M. C. R. Butler, The irreducible factors of \(f(x^m)\) over a finite field, J. London Math. Soc. 30 (1955), 480–482.
MathSciNet
CrossRef
-
E. F. Canaday, The sum of the divisors of a polynomial, Duke Math. J. 8 (1941), 721–737.
MathSciNet
Link
-
S. D. Cohen, On irreducible polynomials of certain types in finite fields, Proc. Cambridge Philos. Soc. 66 (1969), 335–344.
MathSciNet
CrossRef
-
S. D. Cohen, The irreducibility of compositions of linear polynomials over a finite field, Compositio Math. 47 (1982), 149–152.
MathSciNet
Link
-
U. C. Cengiz, P. Pollack and E. Treviño, Counting perfect polynomials, Finite Fields Appl. 47 (2017), 242–255.
MathSciNet
CrossRef
-
L. H. Gallardo and O. Rahavandrainy, On perfect polynomials over \({\mathbb{F}}_4\), Port. Math. (N. S.), 62 (2005), 109–122.
MathSciNet
-
L. H. Gallardo and O. Rahavandrainy, Odd perfect polynomials over \({\mathbb{F}}_2\), J. Théor. Nombres Bordeaux 19 (2007), 165–174.
MathSciNet
Link
-
L. H. Gallardo and O. Rahavandrainy, Perfect polynomials over \({\mathbb{F}}_4\) with less than five prime factors, Port. Math. (N. S.) 64 (2007), 21–38.
MathSciNet
CrossRef
-
L. H. Gallardo and O. Rahavandrainy, Perfect polynomials over \({\mathbb{F}}_3\), Int. J. Algebra 2 (2008), 477–492.
MathSciNet
-
L. H. Gallardo and O. Rahavandrainy, There is no odd perfect polynomial over \({\mathbb{F}}_2\) with four prime factors, Port. Math. 66 (2009), 131–145.
MathSciNet
CrossRef
-
L. H. Gallardo and O. Rahavandrainy, Even perfect polynomials over \({\mathbb{F}}_2\) with four prime factors, Int. J. Pure Appl. Math. 52 (2009), 301–314.
MathSciNet
-
L. H. Gallardo and O. Rahavandrainy, All perfect polynomials with up to four prime factors over \({\mathbb{F}}_4\), Math. Commun. 14 (2009), 47–65.
MathSciNet
-
L. H. Gallardo and O. Rahavandrainy, On splitting perfect polynomials over \({\mathbb{F}}_{p^2}\), Port. Math. 66 (2009), 261–273.
MathSciNet
CrossRef
-
L. H. Gallardo and O. Rahavandrainy, On unitary splitting perfect polynomials over \({\mathbb{F}}_{p^2}\), Math. Commun. 15 (2010), 159–176.
MathSciNet
-
L. H. Gallardo and O. Rahavandrainy, Unitary perfect polynomials over \({\mathbb{F}}_p\) with less than five prime factors, Funct. Approx. Comment. Math. 45 (2011), 67–78.
MathSciNet
CrossRef
-
L. H. Gallardo and O. Rahavandrainy, On splitting perfect polynomials over \({\mathbb{F}}_{p^p}\), Int. Electron. J. Algebra 9 (2011), 85–102.
MathSciNet
-
L. H. Gallardo and O. Rahavandrainy, On even (unitary) perfect polynomials over \({\mathbb{F}}_2\), Finite Fields Appl. 18 (2012), 920–932.
MathSciNet
CrossRef
-
L. H. Gallardo and O. Rahavandrainy, On perfect polynomials over \({\mathbb{F}}_p\) with \(p\) irreducible factors, Port. Math. 69 (2012), 283–303.
MathSciNet
CrossRef
-
L. H. Gallardo and O. Rahavandrainy, Perfect polynomials over \({\mathbb{F}}_p\) with \(p+1\) irreducible divisors, Acta Math. Univ. Comenian. (N.S.) 83 (2014), 93–112.
MathSciNet
CrossRef
-
L. H. Gallardo and O. Rahavandrainy, Characterization of sporadic perfect polynomials over \({\mathbb{F}}_2\), Funct. Approx. Comment. Math. 55 (2016), 7–21.
MathSciNet
CrossRef
-
L. H. Gallardo and O. Rahavandrainy, There are finitely many even perfect polynomials over \({\mathbb{F}}_p\) with \(p+1\) irreducible divisors, Acta Math. Univ. Comenian. (N.S.) 85 (2016), 261–275.
MathSciNet
-
L. H. Gallardo and O. Rahavandrainy, On Mersenne polynomials over \({\mathbb{F}}_{2}\), Finite Fields Appl. 59 (2019), 284–296.
MathSciNet
CrossRef
-
L. H. Gallardo and O. Rahavandrainy, On (unitary) perfect polynomials over \({\mathbb{F}}_2\) with only Mersenne primes as odd divisors, preprint, arXiv:1908.00106 [math.NT].
-
L. H. Gallardo and O. Rahavandrainy, A polynomial variant of perfect numbers, J. Integer Seq. 23 (2020), Art. 20.8.6, 9 pp.
MathSciNet
-
L. H. Gallardo, On the equation \(\prod_{P}\Phi_3(P) = \prod_{P}P^2\) over \({\mathbb{F}}_2[x]\), Gulf J. Math. 12 (2022), 39–48.
MathSciNet
-
M. K. Kyuregyan, Recurrent methods for constructing irreducible polynomials over \(GF(2)\), Finite Fields Appl. 8 (2002), 52–68.
MathSciNet
CrossRef
-
M. K. Kyuregyan and G. H. Kyuregyan, Irreducible compositions of polynomials over finite fields, Des. Codes Cryptogr., 61 (2011), 301–314.
MathSciNet
CrossRef
-
R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1996.
-
A. F. Long, Factorization of irreducible polynomials over a finite field with the substitution \(x^{q^r} -x\) for \(x\), Acta Arith. 25 (1973/74), 65–80.
MathSciNet
CrossRef
-
D. Panario, L. Reis and Q. Wang, Construction of irreducible polynomials through rational transformations, J. Pure Appl. Algebra 224 (2020), 106241, 17 p.
MathSciNet
CrossRef
-
E. L. Petersson, Über die Irreduzibilität ganzahliger Polynome nach einem Primzahlmodul, J. Reine Angew. Math. 175 (1936), 209–220.
-
L. Reis, Factorization of a class of composed polynomials, Des. Codes Cryptogr. 87 (2019), 1657–1671.
MathSciNet
CrossRef
-
R. G. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), 1099–1106.
MathSciNet
Link
Glasnik Matematicki Home Page