Glasnik Matematicki, Vol. 57, No. 2 (2022), 203-219. \( \)

ON THE EXISTENCE OF \(D(-3)\)-QUADRUPLES OVER \(\mathbb{Z}\)

Alan Filipin and Ana Jurasić

Faculty of Civil Engineering, University of Zagreb, 10 000 Zagreb, Croatia
e-mail:filipin@grad.hr

Faculty of Mathematics, University of Rijeka, 51 000 Rijeka, Croatia
e-mail:ajurasic@math.uniri.hr


Abstract.   In this paper we prove that there does not exist a set of four non-zero polynomials from \(\mathbb{Z}[X]\), not all constant, such that the product of any two of its distinct elements decreased by \(3\) is a square of a polynomial from \(\mathbb{Z}[X]\).

2020 Mathematics Subject Classification.   11D09, 11D45

Key words and phrases.   Diophantine \(m\)-tuples, polynomials


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.57.2.03


References:

  1. E. Brown, Sets in which \(xy + k\) is always a square, Math. Comp. 45 (1985), 613–620.
    MathSciNet    CrossRef

  2. N. C. Bonciocat, M. Cipu and M. Mignotte, There is no Diophantine \(D(-1)\)-quadruple, J. Lond. Math. Soc. 105 (2022), 63–99.
    MathSciNet    CrossRef

  3. Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers, in: Nauka, eds. I. G. Bashmakova, 1974, 85–86, 215–217.

  4. A. Dujella, Generalization of a problem of Diophantus, Acta Arith. 65 (1993), 15–27.
    MathSciNet    CrossRef

  5. A. Dujella, On the exceptional set in the problem of Diophantus and Davenport, in: Application of Fibonacci Numbers, Vol. 7, eds. G. E. Bergum, A. N. Philippou, A. F. Horadam, Kluwer, Dordrecht, 1998, 69–76.
    MathSciNet

  6. A. Dujella, On the size of Diophantine \(m\)-tuples, Math. Proc. Cambridge Philos. Soc. 132 (2002), 23–33.
    MathSciNet    CrossRef

  7. A. Dujella, Bounds for the size of sets with the property \(D(n)\), Glas. Mat. Ser. III 39 (2004), 199–205.
    MathSciNet    CrossRef

  8. A. Dujella and C. Fuchs, A polynomial variant of a problem of Diophantus and Euler, Rocky Mountain J. Math. 33 (2003), 797–811.
    MathSciNet    CrossRef

  9. A. Dujella and C. Fuchs, Complete solution of the polynomial version of a problem of Diophantus, J. Number Theory 106 (2004), 326–344.
    MathSciNet    CrossRef

  10. A. Dujella, C. Fuchs and R. F. Tichy, Diophantine \(m\)-tuples for linear polynomials, Period. Math. Hungar. 45 (2002), 21–33.
    MathSciNet    CrossRef

  11. A. Dujella, C. Fuchs and G. Walsh, Diophantine \(m\)-tuples for linear polynomials. II. Equal degrees, J. Number Theory 120 (2006), 213–228.
    MathSciNet    CrossRef

  12. A. Dujella and A. Jurasić, On the size of sets in a polynomial variant of a problem of Diophantus, Int. J. Number Theory 6 (2010), 1449–1471.
    MathSciNet    CrossRef

  13. A. Dujella and F. Luca, On a problem of Diophantus with polynomials, Rocky Mountain J. Math. 37 (2007), 131–157.
    MathSciNet    CrossRef

  14. A. Filipin and A. Jurasić, On the size of Diophantine \(m\)-tuples for linear polynomials, Miskolc Math. Notes 17 (2016), 861–876.
    MathSciNet    CrossRef

  15. A. Filipin and A. Jurasić, A polynomial variant of a problem of Diophantus and its consequences, Glas. Mat. Ser. III 54 (2019), 21–52.
    MathSciNet    CrossRef

  16. P. Gibbs, A generalised Stern-Brocot tree from regular Diophantine quadruples, preprint, arXiv:math/9903035 [math.NT].

  17. P. Gibbs, Some rational sextuples, Glas. Mat. Ser. III 41 (2006), 195–203.
    MathSciNet    CrossRef

  18. B. W. Jones, A variation of a problem of Davenport and Diophantus, Quart. J. Math. Oxford Ser. 27 (1976), 349–353.
    MathSciNet    CrossRef

  19. B. W. Jones, A second variation of a problem of Davenport and Diophantus, Fibonacci Quart. 15 (1977), 323–330.
    MathSciNet

Glasnik Matematicki Home Page