Glasnik Matematicki, Vol. 57, No. 2 (2022), 203-219. \( \)
ON THE EXISTENCE OF \(D(-3)\)-QUADRUPLES OVER \(\mathbb{Z}\)
Alan Filipin and Ana Jurasić
Faculty of Civil Engineering, University of Zagreb, 10 000 Zagreb, Croatia
e-mail:filipin@grad.hr
Faculty of Mathematics, University of Rijeka, 51 000 Rijeka, Croatia
e-mail:ajurasic@math.uniri.hr
Abstract.
In this paper we prove that there does not exist a set of four non-zero polynomials from \(\mathbb{Z}[X]\), not all constant, such that the product of any two of its distinct elements decreased by \(3\) is a square of a polynomial from \(\mathbb{Z}[X]\).
2020 Mathematics Subject Classification. 11D09,
11D45
Key words and phrases. Diophantine \(m\)-tuples, polynomials
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.57.2.03
References:
-
E. Brown, Sets in which \(xy + k\) is always a square, Math. Comp. 45 (1985), 613–620.
MathSciNet
CrossRef
-
N. C. Bonciocat, M. Cipu and M. Mignotte, There is no Diophantine \(D(-1)\)-quadruple, J. Lond. Math. Soc. 105 (2022), 63–99.
MathSciNet
CrossRef
-
Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers, in: Nauka, eds. I. G. Bashmakova, 1974, 85–86, 215–217.
-
A. Dujella, Generalization of a problem of Diophantus, Acta Arith. 65 (1993), 15–27.
MathSciNet
CrossRef
-
A. Dujella, On the exceptional set in the problem of Diophantus and Davenport, in: Application of Fibonacci Numbers, Vol. 7, eds. G. E. Bergum, A. N. Philippou, A. F. Horadam, Kluwer, Dordrecht, 1998, 69–76.
MathSciNet
-
A. Dujella, On the size of Diophantine \(m\)-tuples, Math. Proc. Cambridge Philos. Soc. 132 (2002), 23–33.
MathSciNet
CrossRef
-
A. Dujella, Bounds for the size of sets with the property \(D(n)\), Glas. Mat. Ser. III 39 (2004), 199–205.
MathSciNet
CrossRef
-
A. Dujella and C. Fuchs, A polynomial variant of a problem of Diophantus and Euler, Rocky Mountain J. Math. 33 (2003), 797–811.
MathSciNet
CrossRef
-
A. Dujella and C. Fuchs, Complete solution of the polynomial version of a problem of Diophantus, J. Number Theory 106 (2004), 326–344.
MathSciNet
CrossRef
-
A. Dujella, C. Fuchs and R. F. Tichy, Diophantine \(m\)-tuples for linear polynomials, Period. Math. Hungar. 45 (2002), 21–33.
MathSciNet
CrossRef
-
A. Dujella, C. Fuchs and G. Walsh, Diophantine \(m\)-tuples for linear polynomials. II. Equal degrees, J. Number Theory 120 (2006), 213–228.
MathSciNet
CrossRef
-
A. Dujella and A. Jurasić, On the size of sets in a polynomial variant of a problem of Diophantus, Int. J. Number Theory 6 (2010), 1449–1471.
MathSciNet
CrossRef
-
A. Dujella and F. Luca, On a problem of Diophantus with polynomials, Rocky Mountain J. Math. 37 (2007), 131–157.
MathSciNet
CrossRef
-
A. Filipin and A. Jurasić, On the size of Diophantine \(m\)-tuples for linear polynomials, Miskolc Math. Notes 17 (2016), 861–876.
MathSciNet
CrossRef
-
A. Filipin and A. Jurasić, A polynomial variant of a problem of Diophantus and its consequences, Glas. Mat. Ser. III 54 (2019), 21–52.
MathSciNet
CrossRef
-
P. Gibbs, A generalised Stern-Brocot tree from regular Diophantine quadruples, preprint, arXiv:math/9903035 [math.NT].
-
P. Gibbs, Some rational sextuples, Glas. Mat. Ser. III 41 (2006), 195–203.
MathSciNet
CrossRef
-
B. W. Jones, A variation of a problem of Davenport and Diophantus, Quart. J. Math. Oxford Ser. 27 (1976), 349–353.
MathSciNet
CrossRef
-
B. W. Jones, A second variation of a problem of Davenport and Diophantus, Fibonacci Quart. 15 (1977), 323–330.
MathSciNet
Glasnik Matematicki Home Page