Glasnik Matematicki, Vol. 57, No. 2 (2022), 185-201. \( \)
ON THE MULTIPLICITY IN PILLAI'S PROBLEM WITH FIBONACCI NUMBERS AND POWERS OF A FIXED PRIME
Herbert Batte, Mahadi Ddamulira, Juma Kasozi and Florian Luca
Department of Mathematics, Makerere University, Kampala, Uganda
e-mail:hbatte91@gmail.com
Department of Mathematics, Makerere University, Kampala, Uganda
e-mail:mahadi.ddamulira@mak.ac.ug
Department of Mathematics, Makerere University, Kampala, Uganda
e-mail:juma.kasozi@mak.ac.ug
School of Mathematics, University of the Witwatersrand, Johannesburg, South Africa, &, Research Group in Algebraic Structures and Applications, King Abdulaziz University, Jeddah, Saudi Arabia, &, Max Planck Institute for Software Systems, Saarbrücken, Germany, &, Centro de Ciencias Matemáticas UNAM, Morelia, Mexico
e-mail:Florian.Luca@wits.ac.za
Abstract.
Let \( \{F_n\}_{n\geq 0} \) be the sequence of Fibonacci numbers and let \(p\) be a prime. For an integer \(c\) we write \(m_{F,p}(c)\) for the number of distinct representations of \(c\) as \(F_k-p^\ell\) with \(k\ge 2\) and \(\ell\ge 0\). We prove that \(m_{F,p}(c)\le 4\).
2020 Mathematics Subject Classification. 11B39, 11D61, 11J86
Key words and phrases. Fibonacci numbers, prime numbers, linear forms in logarithms, Pillai's problem
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.57.2.02
References:
-
F. Amoroso and E. Viada, Small points on subvarieties of a torus, Duke Math. J. 150 (2009), 407–442.
MathSciNet
CrossRef
-
A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19–62.
MathSciNet
CrossRef
-
J. J. Bravo, F. Luca and K. Yazán, On Pillai's problem with Tribonacci numbers and Powers of 2, Bull. Korean Math. Soc. 54 (2017), 1069–1080.
MathSciNet
CrossRef
-
Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163 (2006), 969–1018.
MathSciNet
CrossRef
-
K. C. Chim, I. Pink and V. Ziegler, On a variant of Pillai's problem II, J. Number Theory 183 (2018), 269–290.
MathSciNet
CrossRef
-
M. Ddamulira, F. Luca and M. Rakotomalala, On a problem of Pillai with Fibonacci numbers and powers of 2, Proc. Indian Acad. Sci. Math. Sci. 127 (2017), 411–421.
MathSciNet
CrossRef
-
M. Ddamulira, On a problem of Pillai with Fibonacci numbers and powers of 3. Bol. Soc. Mat. Mex. 26 (2020), 263–277.
MathSciNet
CrossRef
-
S. Gúzman and F. Luca, Linear combinations of factorials and \(s\)-units in a binary recurrence sequence, Ann. Math. Qué. 38 (2014), 169–188.
MathSciNet
CrossRef
-
M. Laurent, M. Mignotte and Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285–321.
MathSciNet
CrossRef
-
E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II, (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125–180; translation in Izv. Math. 64 (2000), 1217–1269.
MathSciNet
CrossRef
-
R. J. McIntosh and E. L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Math. Comp. 76 (2007), 2087–2094.
MathSciNet
CrossRef
-
M. R. Murty and J. Esmonde, Problems in algebraic number theory, Second edition. Graduate Texts in Mathematics, 190, Springer Verlag, New York, 2005.
MathSciNet
CrossRef
-
S. S. Pillai, On \(a^x - b^y = c\), J. Indian Math. Soc. N. Ser. 2 (1936), 119–122.
Glasnik Matematicki Home Page