Glasnik Matematicki, Vol. 57, No. 2 (2022), 161-184. \( \)
NEW PARTITION IDENTITIES FROM \(C^{(1)}_\ell\)-MODULES
Stefano Capparelli, Arne Meurman, Andrej Primc and Mirko Primc
Dipartimento SBAI, Università di Roma La Sapienza, Roma, Italy
e-mail:stefano.capparelli@uniroma1.it
Department of Mathematics, University of Lund, Box 118, 22100 Lund, Sweden
e-mail:arne.meurman@math.lu.se
Kersnikova 11, 1 000 Ljubljana, Slovenia
e-mail:aprimc@gmail.com
Faculty of Science, University of Zagreb, Zagreb, Croatia
e-mail:primc@math.hr
Abstract.
In this paper we conjecture combinatorial Rogers-Ramanujan type colored partition identities related to standard representations of the affine Lie algebra of type \(C^{(1)}_\ell\), \(\ell\geq2\), and we conjecture similar colored partition identities with no obvious connection to representation theory of affine Lie algebras.
2020 Mathematics Subject Classification. 05A17, 17B67
Key words and phrases. Rogers-Ramanujan type identities, affine Lie algebras
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.57.2.01
References:
-
K. Alladi, G. E. Andrews and B. Gordon, Refinements and generalizations of Capparelli's conjecture on partitions, J. Algebra 174 (1995), 636–658.
MathSciNet
CrossRef
-
G. E. Andrews, An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 4082–4085.
MathSciNet
CrossRef
-
G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and Its Applications, Vol. 2, Addison-Wesley, 1976.
MathSciNet
-
M. K. Bos, Coding the principal character formula for affine Kac-Moody Lie algebras, Math. Comp. 72 (2003), 2001–2012.
MathSciNet
CrossRef
-
K. Bringmann, C. Jennings-Shaffer and K. Mahlburg, Proofs and reductions of Kanade and Russell partition identities, J. Reine Angew. Math. 766 (2020), 109–135.
MathSciNet
CrossRef
-
S. Capparelli, On some representations of twisted affine Lie algebras and combinatorial identities, J. Algebra 154 (1993), 335–355.
MathSciNet
CrossRef
-
J. Dousse and I. Konan, Generalisations of Capparelli's and Primc's identities, I: Coloured Frobenius partitions and combinatorial proofs, Adv. Math. 408 (2022), Paper no. 108571, 70 pp.
MathSciNet
CrossRef
-
B. Feigin, R. Kedem, S. Loktev, T. Miwa and E Mukhin, Combinatorics of the \(\widehat{\mathfrak sl}_2\) spaces of coinvariants, Transform. Groups 6 (2001), 25–52.
MathSciNet
CrossRef
-
E. Feigin, The PBW filtration, Represent. Theory 13 (2009), 165-181.
MathSciNet
CrossRef
-
E. Feigin, G. Fourier and P. Littelmann, PBW filtration and bases for symplectic Lie algebras, Int. Math. Res. Not. IMRN 24 (2011), 5760–5784.
MathSciNet
CrossRef
-
B. Gordon, A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math. 83 (1961), 393–399.
MathSciNet
CrossRef
-
V. G. Kac, Infinite-dimensional Lie algebras, third edition. Cambridge University Press, Cambridge, 1990.
MathSciNet
CrossRef
-
S. Kanade and M. C. Russell, IdentityFinder and some new identities of Rogers-Ramanujan type, Exp. Math. 24 (2015), 419–423.
MathSciNet
CrossRef
-
J. Lepowsky, Lectures on Kac-Moody Lie algebras, Université Paris VI, Spring, 1978.
-
J. Lepowsky and R. L. Wilson, The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities, Invent. Math. 77 (1984), 199–290; II: The case \(A_1^{(1)}\), principal gradation, Invent. Math. 79 (1985), 417–442.
MathSciNet
CrossRef
MathSciNet
CrossRef
-
A. Meurman and M. Primc, Annihilating fields of standard modules of \({\mathfrak sl}(2,\mathbb C)\,\widetilde{}\) and combinatorial identities, Mem. Amer. Math. Soc. 137 (1999), no. 652.
MathSciNet
CrossRef
-
A. Primc,
https://github.com/aprimc/discretaly
-
M. Primc and T. Šikić, Combinatorial bases of basic modules for affine Lie algebras \(C_n^{(1)}\), J. Math. Phys. 57 (2016), 091701, 19 pp.
MathSciNet
CrossRef
-
M. Primc and T. Šikić, Leading terms of relations for standard modules of \(C_{n}^{(1)}\), Ramanujan J. 48 (2019), 509–543.
MathSciNet
CrossRef
-
G. Trupčević, Bases of standard modules for affine Lie algebras of type \(C_{\ell}^{(1)}\), Comm. Algebra 46 (2018), 3663–3673.
MathSciNet
CrossRef
Glasnik Matematicki Home Page