Glasnik Matematicki, Vol. 57, No. 1 (2022), 129-147. \( \)

EXPONENTIAL MOMENTS OF SIMULTANEOUS HITTING TIME FOR NON-ATOMIC MARKOV CHAINS

Vitaliy Golomoziy

Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, 64 Volodymyrska st, Kyiv, 01033, Ukraine
e-mail:vitaliy.golomoziy@univ.kiev.ua


Abstract.   This paper is devoted to studying the first simultaneous hitting time of a given set by two discrete-time, inhomogeneous Markov chains with values in general phase space. Established conditions for the existence of the hitting time's exponential moment. Computable bounds for the exponential moment are obtained under the condition of stochastic dominance.

2020 Mathematics Subject Classification.   60J05, 60J05

Key words and phrases.   Markov chains, coupling method, inhomogeneous renewal theory


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.57.1.09


References:

  1. I. M. Andrulytė, E. Bernackaitė, D. Kievinaitė and J. Šiaulys, A Lundberg-type inequality for an inhomogeneous renewal risk model, Mod. Stoch. Theory Appl. 2 (2015), 173–184.
    MathSciNet    CrossRef

  2. D. P. Connors and P. R. Kumar, Simulated annealing and balance of recurrent order in time-inhomogeneous Markov chains, in: Proceedings of the 26th Conference on Decision and Control, 1987, 2261–2263.

  3. R. Dobrushin, Central limit theorems for non-stationary Markov chains I, Teor. Veroyatnost. i Primenen. 1 (1956), 72–89,
    MathSciNet

  4. R. Dobrushin, Central limit theorems for nonstationary Markov chains II, Teor. Veroyatnost. i Primenen. 1 (1956), 365–425.
    MathSciNet

  5. R. Douc, E. Moulines, P. Priouret and P. Soulier, Markov chains, Springer, Cham, 2018.
    MathSciNet    CrossRef

  6. R. Douc, E. Moulines and J. S. Rosenthal, Quantitative bounds on convergence of time-inhomogeneous Markov chains, Ann. Appl. Probab. 14 (2004), 1643–1665.
    MathSciNet    CrossRef

  7. V. Golomoziy, An estimate for an expectation of the simultaneous renewal for time-inhomogeneous Markov chains, Mod. Stoch. Theory Appl. 3 (2016), 315–323.
    MathSciNet    CrossRef

  8. V. Golomoziy, Computable bounds of exponential moments of simultaneous hitting time for two time-inhomogeneous atomic Markov chains, in: Procedings of the International Conference on Stochastic Processes and Algebraic Structures, in print.

  9. V. Golomoziy, An estimate of the expectation of the excess of a renewal sequence generated by a time-inhomogeneous Markov chain if a square-integrable majorizing sequence exists, Theory Probab. Math. Statist. 94 (2017), 53–62.
    MathSciNet    CrossRef

  10. V. Golomoziy, An inequality for the coupling moment in the case of two inhomogeneous Markov chains, Theory Probab. Math. Statist. 90 (2015), 43–56.
    MathSciNet    CrossRef

  11. V. Golomoziy, On estimation of expectation of simultaneous renewal time of time-inhomogeneous Markov chains using dominating sequence, Mod. Stoch. Theory Appl. 6 (2019), 333–343.
    MathSciNet    CrossRef

  12. V. Golomoziy, Estimates of stability of transition probabilities for non-homogeneous Markov chains in the case of the uniform minorization, Theor. Probability and Math. Statist. 101 (2020), 85–101.

  13. V. Golomoziy and N. Kartashov, Maximal coupling and stability of discrete inhomogeneous Markov chains, Theory Probab. Math. Statist. 91 (2014), 17–27.
    MathSciNet    CrossRef

  14. V. Golomoziy and N. Kartashov, On the integrability of the coupling moment for time-inhomogeneous Markov chains, Theory Probab. Math. Statist. 89 (2014), 1–12.
    MathSciNet    CrossRef

  15. V. Golomoziy and Y. Mishura, Stability estimates for finite-dimensional distributions of time-inhomogeneous Markov chains, Mathematics 2020, 8, 174.
    CrossRef

  16. Y. Kartashov, V. Golomoziy and N. Kartashov, The impact of stress factors on the price of widow's pensions, in: Modern problems in insurance mathematics, Springer, Cham, 2014, pp. 223–237.
    MathSciNet

  17. N. Kartashov and V. Golomoziy, Maximal coupling and stability of discrete Markov chains. I, Theory Probab. Math. Statist. 86 (2013), 93–104.
    MathSciNet    CrossRef

  18. N. Kartashov and V. Golomoziy, Maximal coupling procedure and stability of discrete Markov chains. II, Theory Probab. Math. Statist. 87 (2013), 65–78.
    MathSciNet    CrossRef

  19. R. W. Madsen, A note on some ergodic theorems of A. Paz, Ann. Math. Statist. 42 (1971), 405–408.
    MathSciNet    CrossRef

  20. S. Meyn and R.L. Tweedie, Markov chains and stochastic stability, Cambridge University Press, Cambridge, 2009.
    MathSciNet    CrossRef

  21. J. Neveu, Mathematical foundations of the calculus of probability, Holden-Day, Inc., San Francisco–London–Amsterdam, 1965.
    MathSciNet

  22. E. Nummelin, A splitting technique for Harris recurrent Markov chains, Z. Wahrsch. Verw. Gebiete 43 (1978), 309–318.
    MathSciNet    CrossRef

  23. D. Revuz, Markov chains, North-Holland Publishing Co., Amsterdam, 1984.
    MathSciNet

Glasnik Matematicki Home Page