Glasnik Matematicki, Vol. 57, No. 1 (2022), 119-128. \( \)

GRAPHS OF CURVES FOR SURFACES WITH FINITE-INVARIANCE INDEX \(1\)

Justin Lanier and Marissa Loving

Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL 60637, USA
e-mail:jlanier@math.uchicago.edu

Department of Mathematics, University of Wisconsin – Madison, 480 Lincoln Dr, Madison, WI 53706, USA
e-mail:mloving2@wisc.edu


Abstract.   In this note we make progress toward a conjecture of Durham–Fanoni–Vlamis, showing that every infinite-type surface with fi­ni­te-invariance index \(1\) and no nondisplaceable compact subsurfaces fails to have a good graph of curves, that is, a connected graph where vertices represent homotopy classes of essential simple closed curves and with a natural mapping class group action having infinite diameter orbits. Our arguments use tools developed by Mann–Rafi in their study of the coarse geometry of big mapping class groups.

2020 Mathematics Subject Classification.   57K20, 57M15, 37E30

Key words and phrases.   Infinite-type surfaces, curve graphs, big mapping class groups.


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.57.1.08


References:

  1. J. Aramayona, private communication, 2018.

  2. J. Aramayona and F. Valdez, On the geometry of graphs associated to infinite-type surfaces, Math. Z. 289 (2018), 309–322.
    MathSciNet    CrossRef

  3. J. Aramayona and N. G. Vlamis, Big mapping class groups: an overview, 2020.
    MathSciNet    CrossRef

  4. J. Bavard, Hyperbolicité du graphe des rayons et quasi-morphismes sur un gros groupe modulaire, Geom. Topol. 20 (2016), 491–535.
    MathSciNet    CrossRef

  5. D. Calegari, Big mapping class groups and dynamics, Geometry and the imagination, 2009.
    Link

  6. M. G. Durham, F. Fanoni and N. G. Vlamis, Graphs of curves on infinite-type surfaces with mapping class group actions, Ann. Inst. Fourier (Grenoble) 68 (2018), 2581–2612.
    MathSciNet    Link

  7. W. J. Harvey, Boundary structure of the modular group, in: Riemann surfaces and related topics, Princeton Univ. Press, Princeton, 1981, 245–251.
    MathSciNet

  8. B. Kerékjártó, Vorlesungen über Topologie. I, Springer, Berlin, 1923.

  9. J. Malestein and J. Tao, Self-similar surfaces: Involutions and perfection, arXiv:2106.03681, 2021.

  10. K. Mann and K. Rafi, Large scale geometry of big mapping class groups, arXiv:1912.10914, 2019.

  11. H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. I. Hyperbolicity., Invent. Math. 138 (1999), 103–149.
    MathSciNet    CrossRef

  12. I. Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963), 259–269.
    MathSciNet    CrossRef

  13. C. Rosendal, Large scale geometry of metrisable groups, arXiv:1403.3106, 2014.

Glasnik Matematicki Home Page