Glasnik Matematicki, Vol. 57, No. 1 (2022), 89-117. \( \)

THE FINITE COARSE SHAPE - INVERSE SYSTEMS APPROACH AND INTRINSIC APPROACH

Ivan Jelić and Nikola Koceić Bilan

Faculty of Science, University of Split, 21 000 Split, Croatia
e-mail:ivajel@pmfst.hr

Faculty of Science, University of Split, 21 000 Split, Croatia
e-mail:koceic@pmfst.hr


Abstract.   Given an arbitrary category \(\mathcal{C}\), a category \(pro^{*^f}\)-\(\mathcal{C}\) is constructed such that the known \(pro\)-\(\mathcal{C}\) category may be considered as a subcategory of \(pro^{*^f}\)-\(\mathcal{C}\) and that \(pro^{*^f}\)-\(\mathcal{C}\) may be considered as a subcategory of \(pro^*\)-\(\mathcal{C}\). Analogously to the construction of the shape category \(Sh_{(\mathcal{C},\mathcal{D})}\) and the coarse category \(Sh^*_{(\mathcal{C},\mathcal{D})}\), an (abstract) finite coarse shape category \(Sh^{*^f}_{(\mathcal{C},\mathcal{D})}\) is obtained. Between these three categories appropriate faithful functors are defined. The finite coarse shape is also defined by an intrinsic approach using the notion of the \(\epsilon\)-continuity. The isomorphism of the finite coarse shape categories obtained by these two approaches is constructed. Besides, an overview of some basic properties related to the notion of the \(\epsilon\)-continuity is given.

2020 Mathematics Subject Classification.   55P55, 54C56

Key words and phrases.   Topological space, metric space, ANR, category, homotopy, shape, \(\epsilon\)-continuity


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.57.1.07


References:

  1. K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), 223–254.
    MathSciNet    CrossRef

  2. K. Borsuk, Theory of Shape, Monografie Matematyczne, Tom 59, PWN–Polish Scientific Publishers, Warsaw, 1975.
    MathSciNet

  3. C. Ho, On a stability theorem for the fixed point property, Fund. Math. 111 (1981), 169–177.
    MathSciNet    CrossRef

  4. N. Koceić Bilan and N. Uglešić, The coarse shape, Glas. Mat. Ser. III 42(62) (2007), 145–187.
    MathSciNet    CrossRef

  5. S. Mardešić, On Borsuk's shape theory for compact pairs, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 1131–1136.
    MathSciNet

  6. S. Mardešić, Shapes for topological spaces, General Topology and Appl. 3 (1973), 265–282.
    MathSciNet

  7. S. Mardešić and J. Segal, Shape theory, North-Holland, Amsterdam-New York, 1982.
    MathSciNet

  8. K. Morita, On shapes of topological spaces, Fund. Math. 86 (1975), 251–259.
    MathSciNet    CrossRef

  9. J. M. R. Sanjurjo, A noncontinuous description of the shape category of compacta, Quart. J. Math. Oxford 40 (1989), 351–359.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page