Glasnik Matematicki, Vol. 57, No. 1 (2022), 73-88. \( \)

RECONSTRUCTION PROPERTIES OF SELECTIVE RIPS COMPLEXES

Boštjan Lemež and Žiga Virk

Institute of Mathematics, Physics and Mechanics, 1000 Ljubljana, Slovenia
e-mail:bostjan.lemez@imfm.si

Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia
e-mail:ziga.virk@fri.uni-lj.si


Abstract.   Selective Rips complexes associated to two parameters are certain subcomplexes of Rips complexes consisting of thin simplices. They are designed to detect more closed geodesics than their Rips counterparts. In this paper we introduce a general definition of selective Rips complexes with countably many parameters and prove basic reconstruction properties associated with them. In particular, we prove that selective Rips complexes of a closed Riemannian manifold \(X\) attain the homotopy type of \(X\) at small scales. We also completely classify the resulting persistent fundamental group and \(1\)-dimensional persistent homology.

2020 Mathematics Subject Classification.   53C22, 55N35, 55Q05, 55U10, 57N65

Key words and phrases.   Reconstruction results, Rips complexes, Riemannian manifolds, geodesic spaces, fundamental groups


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.57.1.06


References:

  1. M. Adamaszek and H. Adams, The Vietoris–Rips complexes of a circle, Pacific J. Math. 290 (2017), 1–40.
    MathSciNet    CrossRef

  2. H. Adams and B. Coskunuzer, Geometric approaches on persistent homology, arXiv:2103.06408.

  3. D. Attali, A. Lieutier and D. Salinas, Vietoris-Rips complexes also provide topologically correct reconstructions of sampled shapes, in: Proceedings of the 27th annual ACM symposium on Computational geometry, ACM, New York, 2011, 491–500.
    MathSciNet    CrossRef

  4. M. Cencelj, J. Dydak, A. Vavpetič and Ž. Virk, A combinatorial approach to coarse geometry, Topology Appl. 159 (2012), 646–658.
    MathSciNet    CrossRef

  5. H. Edelsbrunner and J. L. Harer, Computational topology. An introduction, American Mathematical Society, Providence, 2010.
    MathSciNet    CrossRef

  6. M. Gromov, Hyperbolic groups, in: Essays in group theory, Springer-Verlag, 1987, 75–263.
    MathSciNet    CrossRef

  7. J. C. Hausmann, On the Vietoris-Rips complexes and a cohomology theory for metric spaces, in: Prospects in topology, Princeton Univ. Press, Princeton, 1995, 175–188.
    MathSciNet

  8. S. Lim, F. Memoli and O. B. Okutan, Vietoris-Rips persistent homology, injective metric spaces, and the filling radius, arXiv:2001.07588.

  9. E. H. Spanier, Algebraic topology, McGraw-Hill Book Co, New York, 1966.
    MathSciNet

  10. L. Vietoris, Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen. Math. Ann. 97 (1927), 454–472.
    MathSciNet    CrossRef

  11. Ž. Virk, Rips complexes as nerves and a functorial Dowker-nerve diagram, Mediterr. J. Math. 18 (2021), no. 58.
    MathSciNet    CrossRef

  12. Ž. Virk, 1-dimensional intrinsic persistence of geodesic spaces, J. Topol. Anal. 12 (2020), 169–207.
    MathSciNet    CrossRef

  13. Ž. Virk, Persistent homology with selective Rips complexes detects geodesic circles, arXiv:2108.07460.

  14. Ž. Virk, Detecting geodesic circles in hyperbolic surfaces with persistent homology, preprint, .

  15. Ž. Virk, Footprints of geodesics in persistent homology, arXiv:2103.07158.

Glasnik Matematicki Home Page