Glasnik Matematicki, Vol. 57, No. 1 (2022), 63-71. \( \)
APPROXIMATELY ORTHOGONALITY PRESERVING MAPPINGS ON HILBERT \(C_{0}(Z)\)-MODULES
Mohammad B. Asadi, Zahra Hassanpour Yakhdani, Fatemeh Olyaninezhad and Abbas Sahleh
School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
and
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran
e-mail:mb.asadi@ut.ac.ir
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran
e-mail:z.hasanpour@ut.ac.ir
Department of Mathematics, University of Guilan, Rasht, Guilan, Iran
e-mail:olyaninejad_f@yahoo.com
Department of Mathematics, University of Guilan, Rasht, Guilan, Iran
e-mail:sahlehj@guilan.ac.ir
Abstract.
In this paper, we will use the categorical approach to
Hilbert \(C^{\ast}\)-modules over a commutative \(C^{\ast}\)-algebra
to investigate the approximately orthogonality preserving mappings
on Hilbert \(C^{\ast}\)-modules over a commutative
\(C^{\ast}\)-algebra.
Indeed, we show that if \(\Psi:\Gamma \rightarrow \Gamma^{\prime}
\) is a nonzero \( C_{0}(Z) \)-linear
\(( \delta , \varepsilon)\)-orthogonality preserving mapping
between the continuous fields of Hilbert spaces on a locally
compact Hausdorff space \(Z\), then \(\Psi\) is injective, continuous
and also for every \( x, y \in \Gamma \) and \(z \in Z\),
\[
\vert
\langle \Psi(x),\Psi(y) \rangle(z) - \varphi^2(z) \langle x,y
\rangle(z) \vert \leq \frac{4(\varepsilon -
\delta)}{(1-\delta)(1+\varepsilon)} \Vert \Psi(x) \Vert \Vert
\Psi(y) \Vert,
\]
where \(\varphi(z) = \sup \{ \Vert \Psi(u)(z)
\Vert : u ~ \text{is a unit vector in} ~ \Gamma \}\).
2020 Mathematics Subject Classification. 46L08, 47B49
Key words and phrases. Approximately orthogonality preserving, Hilbert
\(C^*\)-module, Continuous field of Hilbert spaces
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.57.1.05
References:
-
M. B. Asadi and F. Olyaninezhad, Orthogonality preserving pairs of operators on Hilbert \( C_{0}(Z) \)-modules, published online in Linear and Multilinear algebra.
CrossRef
-
J. Chmieliński, Linear mappings approximately preserving orthogonality, J. Math. Anal. Appl. 304 (2005), 158–169.
MathSciNet
CrossRef
-
J. Chmieliński, Stability of the orthogonality preserving property in finite-dimensional inner product spaces, J. Math. Anal. Appl. 318 (2006), 433–443.
MathSciNet
CrossRef
-
M. Frank, A. S. Mishchenko and A. A. Pavlov, Orthogonality-preserving, \(C^{\ast}\)-conformal and conformal module mappings on Hilbert \(C^{\ast}\)-modules, J. Funct. Anal. 260 (2011), 327–339.
MathSciNet
CrossRef
-
C. Heunen and M. L. Reyes, Frobenius structures over Hilbert \( C^{*}\)-modules, Comm. Math. Phys. 361 (2018), 787–824.
MathSciNet
CrossRef
-
D. Ilišević and A. Turnšek, Approximately orthogonality preserving mappings on \( C^{*} \)-modules, J. Math. Anal. Appl. 341 (2008), 298–308.
MathSciNet
CrossRef
-
C. W. Leung, C. K. Ng and N. C. Wong, Linear orthogonality preservers of Hilbert bundles, J. Aust. Math. Soc. 89 (2010), 245–254.
MathSciNet
CrossRef
-
C. W. Leung, C. K. Ng and N. C. Wong, Linear orthogonality preservers of Hilbert \(C^*\)- modules, J. Operator Theory 71 (2014), 571–584.
MathSciNet
CrossRef
-
V. M. Manuilov and E. V. Troitsky, Hilbert \(C^*\)-modules, Amer. Math. Soc., Providence, 2005.
MathSciNet
CrossRef
-
M. S. Moslehian and A. Zamani, Mapping preserving approximately orthogonality in Hilbert \(C^*\)-modules, Math. Scand. 122 (2018), 257–276.
MathSciNet
CrossRef
-
R. G. Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962), 264–277.
MathSciNet
CrossRef
-
A. Turnšek, On mappings approximately preserving orthogonality, J. Math. Anal. Appl. 336 (2007), 625–631.
MathSciNet
CrossRef
-
P. Wójcik, On certain basis connected with operator and its applications, J. Math. Anal. Appl. 423 (2015), 1320–1329.
MathSciNet
Glasnik Matematicki Home Page