Glasnik Matematicki, Vol. 57, No. 1 (2022), 49-61. \( \)
THREE KINDS OF NUMERICAL INDICES OF \(l_p\)-SPACES
Sung Guen Kim
Department of Mathematics, Kyungpook National University, Daegu 702-701, Republic of Korea
e-mail:sgk317@knu.ac.kr
Abstract.
In this paper, we investigate the polynomial numerical index \(n^{(k)}(l_p),\) the symmetric multilinear numerical index
\(n_s^{(k)}(l_p),\) and the multilinear numerical index \(n_m^{(k)}(l_p)\) of \(l_p\) spaces, for \(1\leq p\leq \infty.\) First we prove that \(n_{s}^{(k)}(l_1)=n_{m}^{(k)}(l_1)=1,\) for every \(k\geq 2.\)
We show that for \(1 \lt p \lt \infty,\) \(n_I^{(k)}(l_p^{j+1})\leq n_I^{(k)}(l_p^j),\) for every \(j\in \mathbb{N}\) and \(n_I^{(k)}(l_p)=\lim_{j\to \infty}n_I^{(k)}(l_p^j),\) for every \(I=s, m,\) where \(l_p^j=(\mathbb{C}^j, \|\cdot\|_p)\) or \((\mathbb{R}^j, \|\cdot\|_p).\)
We also show the following inequality between \( n_s^{(k)}(l_p^j)\) and \(n^{(k)}(l_p^j)\): let \(1 \lt p \lt \infty\) and \(k\in \mathbb{N}\) be
fixed. Then
\[
c(k: l_p^j)^{-1}~n^{(k)}(l_p^j)\leq n_s^{(k)}(l_p^j)\leq n^{(k)}(l_p^j),
\]
for every \(j\in \mathbb{N}\cup\{\infty\},\) where
\(l_p^{\infty}:=l_p,\)
\[
c(k: l_p)=\inf\Big\{M>0: \|\check{Q}\|\leq M\|Q\|,\mbox{ for every}~Q\in {\mathcal P}(^k l_p)\Big\}
\]
and \(\check{Q}\) denotes the symmetric \(k\)-linear form associated with \(Q.\) From this inequality, we deduce that if \(l_{p}\) is a complex space, then \(\lim_{j\to \infty} n_s^{(j)}(l_p)=\lim_{j\to \infty} n_m^{(j)}(l_p)=0,\) for every \(1\lt p \lt \infty.\)
2020 Mathematics Subject Classification. 46A22, 46G20
Key words and phrases. The polynomial numerical index, the symmetric multilinear numerical index, the multilinear numerical index
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.57.1.04
References:
-
F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, Cambridge University Press, London-New York, 1971.
MathSciNet
CrossRef
-
F. F. Bonsall and J. Duncan, Numerical Ranges II, Cambridge University Press, London-New York, 1973.
MathSciNet
CrossRef
-
Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc. 54 (1996), 135–147.
MathSciNet
CrossRef
-
Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, The polynomial numerical index of a Banach space, Proc. Edinb. Math. Soc. 49 (2006), 39–52.
MathSciNet
CrossRef
-
Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, Composition, numerical range and Aron-Berner extension, Math. Scand. 103 (2008), 97–110.
MathSciNet
CrossRef
-
V. Dimant, D. Galicer and J. T. Rodriguez, The polarization constant of finite dimensional complex space is one, Math. Proc. Cambridge Philos. Soc. 172 (2022), 105–123.
MathSciNet
CrossRef
-
S. Dineen, Complex analysis on infinite dimensional spaces, Springer-Verlag, London, 1999.
MathSciNet
CrossRef
-
J. Duncan, C. M. McGregor, J. D. Pryce and A. J. White, The numerical index of a normed space, J. London Math. Soc. 2 (1970), 481–488.
MathSciNet
CrossRef
-
D. Garcia, B. Grecu, M. Maestre, M. Martin and J. Meri, Two dimensional Banach spaces with polynomial numerical index zero, Linear Algebra Appl. 430 (2009), 2488–2500.
MathSciNet
CrossRef
-
C. Finet, M. Martin and R. Paya, Numerical index and renorming, Proc. Amer. Math. Soc. 131 (2003), 871–877.
MathSciNet
CrossRef
-
S. G. Kim, Three kinds of numerical indices of a Banach space, Math. Proc. R. Ir. Acad. 112A (2012), 21–35.
MathSciNet
CrossRef
-
S. G. Kim, Polynomial numerical index of \(l_p ~(1\lt p \lt \infty),\) Kyungpook Math. J. 55 (2015), 615–624.
MathSciNet
CrossRef
-
S. G. Kim, Three kinds of numerical indices of a Banach space II, Quaest. Math. 39 (2016), 153–166.
MathSciNet
CrossRef
-
S. G. Kim, M. Martin and J. Meri, On the polynomial numerical index of the real spaces \({c_0}\), \({\ell_1}, {\ell_\infty},\) J. Math. Anal. Appl. 337 (2008), 98–106.
MathSciNet
CrossRef
-
G. Lopez, M. Martin and R. Paya, Real Banach spaces with numerical index 1, Bull. London Math. Soc. 31 (1999), 207–212.
MathSciNet
CrossRef
-
G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29–43.
MathSciNet
CrossRef
-
M. Martin and R. Paya, Numerical index of vector-valued function spaces, Studia Math. 142 (2000), 269–280.
MathSciNet
CrossRef
-
M. Martin, J. Meri and M. Popov, On the numerical index of \(L_p(\mu)\)-spaces, Israel J. Math. 184 (2011), 183–192.
MathSciNet
CrossRef
Glasnik Matematicki Home Page