Glasnik Matematicki, Vol. 57, No. 1 (2022), 49-61.

THREE KINDS OF NUMERICAL INDICES OF lp-SPACES

Sung Guen Kim

Department of Mathematics, Kyungpook National University, Daegu 702-701, Republic of Korea
e-mail:sgk317@knu.ac.kr


Abstract.   In this paper, we investigate the polynomial numerical index n(k)(lp), the symmetric multilinear numerical index ns(k)(lp), and the multilinear numerical index nm(k)(lp) of lp spaces, for 1p. First we prove that ns(k)(l1)=nm(k)(l1)=1, for every k2. We show that for 1<p<, nI(k)(lpj+1)nI(k)(lpj), for every jN and nI(k)(lp)=limjnI(k)(lpj), for every I=s,m, where lpj=(Cj,p) or (Rj,p). We also show the following inequality between ns(k)(lpj) and n(k)(lpj): let 1<p< and kN be fixed. Then c(k:lpj)1 n(k)(lpj)ns(k)(lpj)n(k)(lpj), for every jN{}, where lp:=lp, c(k:lp)=inf{M>0:QˇMQ, for every QP(klp)} and Qˇ denotes the symmetric k-linear form associated with Q. From this inequality, we deduce that if lp is a complex space, then limjns(j)(lp)=limjnm(j)(lp)=0, for every 1<p<.

2020 Mathematics Subject Classification.   46A22, 46G20

Key words and phrases.   The polynomial numerical index, the symmetric multilinear numerical index, the multilinear numerical index


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.57.1.04


References:

  1. F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, Cambridge University Press, London-New York, 1971.
    MathSciNet    CrossRef

  2. F. F. Bonsall and J. Duncan, Numerical Ranges II, Cambridge University Press, London-New York, 1973.
    MathSciNet    CrossRef

  3. Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc. 54 (1996), 135–147.
    MathSciNet    CrossRef

  4. Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, The polynomial numerical index of a Banach space, Proc. Edinb. Math. Soc. 49 (2006), 39–52.
    MathSciNet    CrossRef

  5. Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, Composition, numerical range and Aron-Berner extension, Math. Scand. 103 (2008), 97–110.
    MathSciNet    CrossRef

  6. V. Dimant, D. Galicer and J. T. Rodriguez, The polarization constant of finite dimensional complex space is one, Math. Proc. Cambridge Philos. Soc. 172 (2022), 105–123.
    MathSciNet    CrossRef

  7. S. Dineen, Complex analysis on infinite dimensional spaces, Springer-Verlag, London, 1999.
    MathSciNet    CrossRef

  8. J. Duncan, C. M. McGregor, J. D. Pryce and A. J. White, The numerical index of a normed space, J. London Math. Soc. 2 (1970), 481–488.
    MathSciNet    CrossRef

  9. D. Garcia, B. Grecu, M. Maestre, M. Martin and J. Meri, Two dimensional Banach spaces with polynomial numerical index zero, Linear Algebra Appl. 430 (2009), 2488–2500.
    MathSciNet    CrossRef

  10. C. Finet, M. Martin and R. Paya, Numerical index and renorming, Proc. Amer. Math. Soc. 131 (2003), 871–877.
    MathSciNet    CrossRef

  11. S. G. Kim, Three kinds of numerical indices of a Banach space, Math. Proc. R. Ir. Acad. 112A (2012), 21–35.
    MathSciNet    CrossRef

  12. S. G. Kim, Polynomial numerical index of lp (1<p<), Kyungpook Math. J. 55 (2015), 615–624.
    MathSciNet    CrossRef

  13. S. G. Kim, Three kinds of numerical indices of a Banach space II, Quaest. Math. 39 (2016), 153–166.
    MathSciNet    CrossRef

  14. S. G. Kim, M. Martin and J. Meri, On the polynomial numerical index of the real spaces c0, 1,, J. Math. Anal. Appl. 337 (2008), 98–106.
    MathSciNet    CrossRef

  15. G. Lopez, M. Martin and R. Paya, Real Banach spaces with numerical index 1, Bull. London Math. Soc. 31 (1999), 207–212.
    MathSciNet    CrossRef

  16. G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29–43.
    MathSciNet    CrossRef

  17. M. Martin and R. Paya, Numerical index of vector-valued function spaces, Studia Math. 142 (2000), 269–280.
    MathSciNet    CrossRef

  18. M. Martin, J. Meri and M. Popov, On the numerical index of Lp(μ)-spaces, Israel J. Math. 184 (2011), 183–192.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page