Glasnik Matematicki, Vol. 57, No. 1 (2022), 49-61. \( \)

THREE KINDS OF NUMERICAL INDICES OF \(l_p\)-SPACES

Sung Guen Kim

Department of Mathematics, Kyungpook National University, Daegu 702-701, Republic of Korea
e-mail:sgk317@knu.ac.kr


Abstract.   In this paper, we investigate the polynomial numerical index \(n^{(k)}(l_p),\) the symmetric multilinear numerical index \(n_s^{(k)}(l_p),\) and the multilinear numerical index \(n_m^{(k)}(l_p)\) of \(l_p\) spaces, for \(1\leq p\leq \infty.\) First we prove that \(n_{s}^{(k)}(l_1)=n_{m}^{(k)}(l_1)=1,\) for every \(k\geq 2.\) We show that for \(1 \lt p \lt \infty,\) \(n_I^{(k)}(l_p^{j+1})\leq n_I^{(k)}(l_p^j),\) for every \(j\in \mathbb{N}\) and \(n_I^{(k)}(l_p)=\lim_{j\to \infty}n_I^{(k)}(l_p^j),\) for every \(I=s, m,\) where \(l_p^j=(\mathbb{C}^j, \|\cdot\|_p)\) or \((\mathbb{R}^j, \|\cdot\|_p).\) We also show the following inequality between \( n_s^{(k)}(l_p^j)\) and \(n^{(k)}(l_p^j)\): let \(1 \lt p \lt \infty\) and \(k\in \mathbb{N}\) be fixed. Then \[ c(k: l_p^j)^{-1}~n^{(k)}(l_p^j)\leq n_s^{(k)}(l_p^j)\leq n^{(k)}(l_p^j), \] for every \(j\in \mathbb{N}\cup\{\infty\},\) where \(l_p^{\infty}:=l_p,\) \[ c(k: l_p)=\inf\Big\{M>0: \|\check{Q}\|\leq M\|Q\|,\mbox{ for every}~Q\in {\mathcal P}(^k l_p)\Big\} \] and \(\check{Q}\) denotes the symmetric \(k\)-linear form associated with \(Q.\) From this inequality, we deduce that if \(l_{p}\) is a complex space, then \(\lim_{j\to \infty} n_s^{(j)}(l_p)=\lim_{j\to \infty} n_m^{(j)}(l_p)=0,\) for every \(1\lt p \lt \infty.\)

2020 Mathematics Subject Classification.   46A22, 46G20

Key words and phrases.   The polynomial numerical index, the symmetric multilinear numerical index, the multilinear numerical index


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.57.1.04


References:

  1. F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, Cambridge University Press, London-New York, 1971.
    MathSciNet    CrossRef

  2. F. F. Bonsall and J. Duncan, Numerical Ranges II, Cambridge University Press, London-New York, 1973.
    MathSciNet    CrossRef

  3. Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc. 54 (1996), 135–147.
    MathSciNet    CrossRef

  4. Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, The polynomial numerical index of a Banach space, Proc. Edinb. Math. Soc. 49 (2006), 39–52.
    MathSciNet    CrossRef

  5. Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre, Composition, numerical range and Aron-Berner extension, Math. Scand. 103 (2008), 97–110.
    MathSciNet    CrossRef

  6. V. Dimant, D. Galicer and J. T. Rodriguez, The polarization constant of finite dimensional complex space is one, Math. Proc. Cambridge Philos. Soc. 172 (2022), 105–123.
    MathSciNet    CrossRef

  7. S. Dineen, Complex analysis on infinite dimensional spaces, Springer-Verlag, London, 1999.
    MathSciNet    CrossRef

  8. J. Duncan, C. M. McGregor, J. D. Pryce and A. J. White, The numerical index of a normed space, J. London Math. Soc. 2 (1970), 481–488.
    MathSciNet    CrossRef

  9. D. Garcia, B. Grecu, M. Maestre, M. Martin and J. Meri, Two dimensional Banach spaces with polynomial numerical index zero, Linear Algebra Appl. 430 (2009), 2488–2500.
    MathSciNet    CrossRef

  10. C. Finet, M. Martin and R. Paya, Numerical index and renorming, Proc. Amer. Math. Soc. 131 (2003), 871–877.
    MathSciNet    CrossRef

  11. S. G. Kim, Three kinds of numerical indices of a Banach space, Math. Proc. R. Ir. Acad. 112A (2012), 21–35.
    MathSciNet    CrossRef

  12. S. G. Kim, Polynomial numerical index of \(l_p ~(1\lt p \lt \infty),\) Kyungpook Math. J. 55 (2015), 615–624.
    MathSciNet    CrossRef

  13. S. G. Kim, Three kinds of numerical indices of a Banach space II, Quaest. Math. 39 (2016), 153–166.
    MathSciNet    CrossRef

  14. S. G. Kim, M. Martin and J. Meri, On the polynomial numerical index of the real spaces \({c_0}\), \({\ell_1}, {\ell_\infty},\) J. Math. Anal. Appl. 337 (2008), 98–106.
    MathSciNet    CrossRef

  15. G. Lopez, M. Martin and R. Paya, Real Banach spaces with numerical index 1, Bull. London Math. Soc. 31 (1999), 207–212.
    MathSciNet    CrossRef

  16. G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29–43.
    MathSciNet    CrossRef

  17. M. Martin and R. Paya, Numerical index of vector-valued function spaces, Studia Math. 142 (2000), 269–280.
    MathSciNet    CrossRef

  18. M. Martin, J. Meri and M. Popov, On the numerical index of \(L_p(\mu)\)-spaces, Israel J. Math. 184 (2011), 183–192.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page