Glasnik Matematicki, Vol. 57, No. 1 (2022), 35-47. \( \)

HÖLDER CONTINUITY FOR THE SOLUTIONS OF THE \(p(x)\)-LAPLACE EQUATION WITH GENERAL RIGHT-HAND SIDE

Abdeslem Lyaghfouri

Department of Mathematical Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
e-mail:a.lyaghfouri@uaeu.ac.ae


Abstract.   We show that bounded solutions of the quasilinear elliptic equation \(\Delta_{p(x)} u=g+div(\textbf{F})\) are locally Hölder continuous provided that the functions \(g\) and \(\textbf{F}\) are in suitable Lebesgue spaces.

2020 Mathematics Subject Classification.   35B65, 35J92

Key words and phrases.   \(p(x)\)-Laplacian, Hölder continuity


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.57.1.03


References:

  1. E. Acerbi and G. Mingione, Gradient estimates for the \(p(x)\)-Laplacean system, J. Reine Angew. Math. 584 (2005), 117–148.
    MathSciNet    CrossRef

  2. S. Antontsev and S. Shmarev, Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, in: Handbook of differential equations: Stationary partial differential equations, Vol 3, Elsevier-North Holland, 2006, 1–100.
    CrossRef

  3. A. Coscia and G. Mingione, Hölder continuity of the gradient of \(p(x)\)-harmonic mappings, C. R. Acad. Sci. Paris Sér. I Math. 328, (1999), 363–368.
    MathSciNet    CrossRef

  4. J. Carrillo and A. Lyaghfouri, The dam problem for nonlinear Darcy's laws and Dirichlet boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 453–505.
    MathSciNet    Link

  5. S. Challal and A. Lyaghfouri, A filtration problem through a heterogeneous porous medium, Interfaces Free Bound. 6 (2004), 55–79.
    MathSciNet    CrossRef

  6. S. Challal and A. Lyaghfouri, Gradient estimates for \(p(x)\)-harmonic functions, Manuscripta Math. 131 (2010), 403–414.
    MathSciNet    CrossRef

  7. S. Challal and A. Lyaghfouri, Hölder continuity of solutions to the \(A\)-Laplace equation involving measures, Commun. Pure Appl. Anal. 8, (2009), 1577–1583.
    MathSciNet    CrossRef

  8. S. Challal and A. Lyaghfouri, Lipschitz continuity of solutions of a free boundary problem involving the \(p\)-Laplacian, J. Math. Anal. Appl. 355 (2009), 700–707.
    MathSciNet    CrossRef

  9. S. Challal and A. Lyaghfouri, On the dam problem with two fluids governed by a nonlinear Darcy's law, Adv. Differential Equations 11 (2006), 841–892.
    MathSciNet

  10. S. Challal and A. Lyaghfouri, Porosity of free boundaries in \(A\)-obstacle problems, Nonlinear Anal. 70 (2009), 2772–2778.
    MathSciNet    CrossRef

  11. S. Challal and A. Lyaghfouri, On the porosity of the free boundary in the \(p(x)\)-obstacle problem, Port. Math. 68 (2011), 109–123.
    MathSciNet    CrossRef

  12. S. Challal and A. Lyaghfouri, Regularity results for a quasilinear free boundary problem, Math. Model. Anal. 25, (2020), 338–350.
    MathSciNet    CrossRef

  13. S. Challal, A. Lyaghfouri and J. F. Rodrigues, On the \(A\)-obstacle problem and the Hausdorff measure of its free boundary, Ann. Mat. Pura Appl. (4) 191 (2012), 113–165.
    MathSciNet    CrossRef

  14. S. Challal, A. Lyaghfouri, J. F. Rodrigues and R. Teymurazyan, On the regularity of the free boundary for a class of quasilinear obstacle problems, Interfaces Free Bound. 16 (2014), 359–394.
    MathSciNet    CrossRef

  15. X. Fan and D. Zhao, On the spaces \(L^{p(x)}(\Omega)\) and \(W^{m,p(x)}(\Omega)\), J. Math. Anal. Appl. 263 (2001), 424–446.
    MathSciNet    CrossRef

  16. K. Ho, Y.-H. Kim, P. Winkert and C. Zhang, The boundedness and Hölder continuity of solutions to elliptic equations involving variable exponents and critical growth, J. Differential Equations 313 (2022), 503–532.
    MathSciNet    CrossRef

  17. T. Kilpeläinen, Hölder continuity of solutions to quasilinear elliptic equations involving measures, Potential Anal. 3 (1994), 265–272.
    MathSciNet    CrossRef

  18. O. Kováčik and J. Rákosnik, On spaces \(L^{p(x)}\) and \(W^{k,p(x)}\), Czechoslovak Math. J. 41(116) (1991), 592–618.
    MathSciNet

  19. A. Lyaghfouri, A continuity result for a quasilinear elliptic free boundary problem, Appl. Math. 65 (2020), 67–87.
    MathSciNet    CrossRef

  20. A. Lyaghfouri, Hölder continuity of \(p(x)\)-superharmonic functions, Nonlinear Anal. 73 (2010), 2433–2444.
    MathSciNet    CrossRef

  21. J. Malý and W. P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, American Mathematical Society, Providence, 1997.
    MathSciNet    CrossRef

  22. J. M. Rakotoson and W. P. Ziemer, Local behavior of solutions of quasilinear elliptic equations with general structure, Trans. Amer. Math. Soc. 319 (1990), 747–764.
    MathSciNet    CrossRef

  23. J. F. Rodrigues and R. Teymurazyan, On the two obstacles problem in Orlicz-Sobolev spaces and applications, Complex Var. Elliptic Equ. 56 (2011), 769–787.
    MathSciNet    CrossRef

  24. J. F. Rodrigues, M. Sanchon and J. M. Urbano, The obstacle problem for nonlinear elliptic equations with variable growth and \(L^1\)-data, Monatsh. Math. 154, (2008), 303–322.
    MathSciNet    CrossRef

  25. P. Winkert and R. Zacher, A priori bounds for weak solutions to elliptic equations with nonstandard growth, Discrete Contin. Dyn. Syst. Ser. S 5, (2012), 865–878.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page