Glasnik Matematicki, Vol. 57, No. 1 (2022), 35-47. \( \)
HÖLDER CONTINUITY FOR THE SOLUTIONS OF THE \(p(x)\)-LAPLACE EQUATION
WITH GENERAL RIGHT-HAND SIDE
Abdeslem Lyaghfouri
Department of Mathematical Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
e-mail:a.lyaghfouri@uaeu.ac.ae
Abstract.
We show that bounded solutions of the quasilinear elliptic equation
\(\Delta_{p(x)} u=g+div(\textbf{F})\) are locally Hölder continuous
provided that the functions \(g\) and \(\textbf{F}\) are in suitable
Lebesgue spaces.
2020 Mathematics Subject Classification. 35B65, 35J92
Key words and phrases. \(p(x)\)-Laplacian, Hölder continuity
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.57.1.03
References:
-
E. Acerbi and G. Mingione, Gradient estimates for the \(p(x)\)-Laplacean system, J. Reine Angew. Math. 584 (2005), 117–148.
MathSciNet
CrossRef
-
S. Antontsev and S. Shmarev, Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, in: Handbook of differential equations: Stationary partial differential equations, Vol 3, Elsevier-North Holland, 2006, 1–100.
CrossRef
-
A. Coscia and G. Mingione, Hölder continuity of the gradient of \(p(x)\)-harmonic mappings, C. R. Acad. Sci. Paris Sér. I Math. 328, (1999), 363–368.
MathSciNet
CrossRef
-
J. Carrillo and A. Lyaghfouri, The dam problem for nonlinear Darcy's laws and Dirichlet boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), 453–505.
MathSciNet
Link
-
S. Challal and A. Lyaghfouri, A filtration problem through a heterogeneous porous medium, Interfaces Free Bound. 6 (2004), 55–79.
MathSciNet
CrossRef
-
S. Challal and A. Lyaghfouri, Gradient estimates for \(p(x)\)-harmonic functions, Manuscripta Math. 131 (2010), 403–414.
MathSciNet
CrossRef
-
S. Challal and A. Lyaghfouri, Hölder continuity of solutions to the \(A\)-Laplace equation involving measures, Commun. Pure Appl. Anal. 8, (2009), 1577–1583.
MathSciNet
CrossRef
-
S. Challal and A. Lyaghfouri, Lipschitz continuity of solutions of a free boundary problem involving the \(p\)-Laplacian, J. Math. Anal. Appl. 355 (2009), 700–707.
MathSciNet
CrossRef
-
S. Challal and A. Lyaghfouri, On the dam problem with two fluids governed by a nonlinear Darcy's law, Adv. Differential Equations 11 (2006), 841–892.
MathSciNet
-
S. Challal and A. Lyaghfouri, Porosity of free boundaries in \(A\)-obstacle problems, Nonlinear Anal. 70 (2009), 2772–2778.
MathSciNet
CrossRef
-
S. Challal and A. Lyaghfouri, On the porosity of the free boundary in the \(p(x)\)-obstacle problem, Port. Math. 68 (2011), 109–123.
MathSciNet
CrossRef
-
S. Challal and A. Lyaghfouri, Regularity results for a quasilinear free boundary problem, Math. Model. Anal. 25, (2020), 338–350.
MathSciNet
CrossRef
-
S. Challal, A. Lyaghfouri and J. F. Rodrigues, On the \(A\)-obstacle problem and the Hausdorff measure of its free boundary, Ann. Mat. Pura Appl. (4) 191 (2012), 113–165.
MathSciNet
CrossRef
-
S. Challal, A. Lyaghfouri, J. F. Rodrigues and R. Teymurazyan, On the regularity of the free boundary for a class of quasilinear obstacle problems, Interfaces Free Bound. 16 (2014), 359–394.
MathSciNet
CrossRef
-
X. Fan and D. Zhao, On the spaces \(L^{p(x)}(\Omega)\) and \(W^{m,p(x)}(\Omega)\), J. Math. Anal. Appl. 263 (2001), 424–446.
MathSciNet
CrossRef
-
K. Ho, Y.-H. Kim, P. Winkert and C. Zhang, The boundedness and Hölder continuity of solutions to elliptic equations involving variable exponents and critical growth, J. Differential Equations 313 (2022), 503–532.
MathSciNet
CrossRef
-
T. Kilpeläinen, Hölder continuity of solutions to quasilinear elliptic equations involving measures, Potential Anal. 3 (1994), 265–272.
MathSciNet
CrossRef
-
O. Kováčik and J. Rákosnik, On spaces \(L^{p(x)}\) and \(W^{k,p(x)}\), Czechoslovak Math. J. 41(116) (1991), 592–618.
MathSciNet
-
A. Lyaghfouri, A continuity result for a quasilinear elliptic free boundary problem, Appl. Math. 65 (2020), 67–87.
MathSciNet
CrossRef
-
A. Lyaghfouri, Hölder continuity of \(p(x)\)-superharmonic functions, Nonlinear Anal. 73 (2010), 2433–2444.
MathSciNet
CrossRef
-
J. Malý and W. P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, American Mathematical Society, Providence, 1997.
MathSciNet
CrossRef
-
J. M. Rakotoson and W. P. Ziemer, Local behavior of solutions of quasilinear elliptic equations with general structure, Trans. Amer. Math. Soc. 319 (1990), 747–764.
MathSciNet
CrossRef
-
J. F. Rodrigues and R. Teymurazyan, On the two obstacles problem in Orlicz-Sobolev spaces and applications, Complex Var. Elliptic Equ. 56 (2011), 769–787.
MathSciNet
CrossRef
-
J. F. Rodrigues, M. Sanchon and J. M. Urbano, The obstacle problem for nonlinear elliptic equations with variable growth and \(L^1\)-data, Monatsh. Math. 154, (2008), 303–322.
MathSciNet
CrossRef
-
P. Winkert and R. Zacher, A priori bounds for weak solutions to elliptic equations with nonstandard growth, Discrete Contin. Dyn. Syst. Ser. S 5, (2012), 865–878.
MathSciNet
CrossRef
Glasnik Matematicki Home Page