Glasnik Matematicki, Vol. 57, No. 1 (2022), 17-33. \( \)
FINITE W-ALGEBRAS ASSOCIATED TO TRUNCATED CURRENT LIE ALGEBRAS
Xiao He
Paris Curie Engineer School, Beijing University of Chemical Technology, P.R.China
e-mail:hexiao@amss.ac.cn
Abstract.
Finite W-algebras associated to truncated current Lie algebras are studied in this paper. We show that some properties of finite W-algebras in the semisimple case hold in the truncated current case. In particular, Kostant's theorem and Skryabin equivalence hold in our case. As an application, we give a classification of simple Whittaker modules for truncated current Lie algebras in the \(s\ell_2\) case.
2020 Mathematics Subject Classification. 17B56, 17B70, 17B81
Key words and phrases. Truncated current Lie algebras, Finite W-algebras, Skryabin equivalence, Whittaker modules.
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.57.1.02
References:
-
A. Babichenko and D. Ridout, Takiff superalgebras and conformal field theory, J. Phys. A 46 (2013), 125204.
MathSciNet
CrossRef
-
J. Brundan, S. M. Goodwin and A. Kleshchev, Highest weight theory for finite \(W\)-algebras, Int. Math. Res. Not. 15 (2008), 53 pp.
MathSciNet
CrossRef
-
P. Casati, Drinfeld-Sokolov hierarchies on truncated current Lie algebras, In: Algebraic methods in dynamical systems, Polish Acad. Sci. Inst. Math., Warsaw (2011), 163–171.
MathSciNet
CrossRef
-
C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85–124.
MathSciNet
CrossRef
-
A. De Sole, V. Kac and D. Valeri, Structure of classical (finite and affine) \(\mathcal{W}\)-algebras, J. Eur. Math. Soc. 9 (2016), 1873–1908.
MathSciNet
CrossRef
-
A. Elashvili and V. Kac, Classification of good gradings of simple Lie algebras, In: Lie groups and invariant theory, Amer. Math. Soc., Providence, 2005, 85–104.
MathSciNet
CrossRef
-
W. L. Gan and V. Ginzburg, Quantization of slodowy slices, Int. Math. Res. Not. 5 (2002), 243–255.
MathSciNet
CrossRef
-
X. He, W-algebras associated to truncated current Lie algebras, PhD Thesis, Université Laval, 2018.
-
X. He, M. Lau and N. Qiao, Whittaker modules for truncated current Lie algebras, in preparation.
-
B. Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101–184.
MathSciNet
CrossRef
-
T. E. Lynch, Generalized Whittaker vectors and representation theory. ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.)–MIT, 1979.
MathSciNet
Link
-
T. Macedo and A. Savage, Invariant polynomials on truncated multicurrent algebras, J. Pure Appl. Algebra. 223 (2019), 349–368.
MathSciNet
CrossRef
-
A. Molev, Casimir elements for certain polynomial current Lie algebras, in: Group 21, Physical applications and mathematical aspects of geometry, groups, and algebras, Vol. 1, 1997, 172–176.
-
A. Molev, Casimir elements and Sugawara operators for Takiff algebras, J. Math. Phys. 62 (2021), 12 pp.
MathSciNet
CrossRef
-
M. Mustaţa, Jet schemes of locally complete intersection canonical singularities, Invent. Math. 145 (2001), 397–424.
MathSciNet
CrossRef
-
A. Premet, Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002), 1–55.
MathSciNet
CrossRef
-
M. Raïs and P. Tauvel, Indice et polynômes invariants pour certaines algèbres de Lie. J. Reine Angew. Math., 425 (1992), 123–140.
MathSciNet
-
I. Vaisman, Lectures on the geometry of Poisson manifolds, Progr. Math. Birkhäuser Verlag, Basel, 1994.
MathSciNet
CrossRef
-
W. Wang, Nilpotent orbits and finite W-algebras, in: Geometric representation theory and extended affine Lie algebras, Amer. Math. Soc., Providence, 2011, 71–105.
MathSciNet
-
B. J. Wilson, Highest-weight theory for truncated current Lie algebras, J. Algebra 336 (2011), 1–27.
MathSciNet
CrossRef
Glasnik Matematicki Home Page