Glasnik Matematicki, Vol. 57, No. 1 (2022), 17-33. \( \)

FINITE W-ALGEBRAS ASSOCIATED TO TRUNCATED CURRENT LIE ALGEBRAS

Xiao He

Paris Curie Engineer School, Beijing University of Chemical Technology, P.R.China
e-mail:hexiao@amss.ac.cn


Abstract.   Finite W-algebras associated to truncated current Lie algebras are studied in this paper. We show that some properties of finite W-algebras in the semisimple case hold in the truncated current case. In particular, Kostant's theorem and Skryabin equivalence hold in our case. As an application, we give a classification of simple Whittaker modules for truncated current Lie algebras in the \(s\ell_2\) case.

2020 Mathematics Subject Classification.   17B56, 17B70, 17B81

Key words and phrases.   Truncated current Lie algebras, Finite W-algebras, Skryabin equivalence, Whittaker modules.


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.57.1.02


References:

  1. A. Babichenko and D. Ridout, Takiff superalgebras and conformal field theory, J. Phys. A 46 (2013), 125204.
    MathSciNet    CrossRef

  2. J. Brundan, S. M. Goodwin and A. Kleshchev, Highest weight theory for finite \(W\)-algebras, Int. Math. Res. Not. 15 (2008), 53 pp.
    MathSciNet    CrossRef

  3. P. Casati, Drinfeld-Sokolov hierarchies on truncated current Lie algebras, In: Algebraic methods in dynamical systems, Polish Acad. Sci. Inst. Math., Warsaw (2011), 163–171.
    MathSciNet    CrossRef

  4. C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85–124.
    MathSciNet    CrossRef

  5. A. De Sole, V. Kac and D. Valeri, Structure of classical (finite and affine) \(\mathcal{W}\)-algebras, J. Eur. Math. Soc. 9 (2016), 1873–1908.
    MathSciNet    CrossRef

  6. A. Elashvili and V. Kac, Classification of good gradings of simple Lie algebras, In: Lie groups and invariant theory, Amer. Math. Soc., Providence, 2005, 85–104.
    MathSciNet    CrossRef

  7. W. L. Gan and V. Ginzburg, Quantization of slodowy slices, Int. Math. Res. Not. 5 (2002), 243–255.
    MathSciNet    CrossRef

  8. X. He, W-algebras associated to truncated current Lie algebras, PhD Thesis, Université Laval, 2018.

  9. X. He, M. Lau and N. Qiao, Whittaker modules for truncated current Lie algebras, in preparation.

  10. B. Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101–184.
    MathSciNet    CrossRef

  11. T. E. Lynch, Generalized Whittaker vectors and representation theory. ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.)–MIT, 1979.
    MathSciNet    Link

  12. T. Macedo and A. Savage, Invariant polynomials on truncated multicurrent algebras, J. Pure Appl. Algebra. 223 (2019), 349–368.
    MathSciNet    CrossRef

  13. A. Molev, Casimir elements for certain polynomial current Lie algebras, in: Group 21, Physical applications and mathematical aspects of geometry, groups, and algebras, Vol. 1, 1997, 172–176.

  14. A. Molev, Casimir elements and Sugawara operators for Takiff algebras, J. Math. Phys. 62 (2021), 12 pp.
    MathSciNet    CrossRef

  15. M. Mustaţa, Jet schemes of locally complete intersection canonical singularities, Invent. Math. 145 (2001), 397–424.
    MathSciNet    CrossRef

  16. A. Premet, Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002), 1–55.
    MathSciNet    CrossRef

  17. M. Raïs and P. Tauvel, Indice et polynômes invariants pour certaines algèbres de Lie. J. Reine Angew. Math., 425 (1992), 123–140.
    MathSciNet

  18. I. Vaisman, Lectures on the geometry of Poisson manifolds, Progr. Math. Birkhäuser Verlag, Basel, 1994.
    MathSciNet    CrossRef

  19. W. Wang, Nilpotent orbits and finite W-algebras, in: Geometric representation theory and extended affine Lie algebras, Amer. Math. Soc., Providence, 2011, 71–105.
    MathSciNet

  20. B. J. Wilson, Highest-weight theory for truncated current Lie algebras, J. Algebra 336 (2011), 1–27.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page