Glasnik Matematicki, Vol. 57, No. 1 (2022), 1-15. \( \)
JACOBSON'S LEMMA FOR THE GENERALIZED \(n\)-STRONG DRAZIN INVERSES IN RINGS AND IN OPERATOR ALGEBRAS
Yanxun Ren and Lining Jiang
School of Mathematics and Statistics, Beijing Institute of Technology, 100081 Beijing, China
e-mail:renyanxun110@126.com
School of Mathematics and Statistics, Beijing Institute of Technology, 100081 Beijing, China
e-mail:jianglining@bit.edu.cn
Abstract.
In this paper, we extend Jacobson's lemma for Drazin inverses to the generalized \(n\)-strong Drazin inverses in a ring, and prove that \(1-ac\) is generalized \(n\)-strong Drazin invertible if and only if \(1-ba\) is generalized \(n\)-strong Drazin invertible, provided that \(a(ba)^{2}=abaca=acaba=(ac)^{2}a\). In addition, Jacobson's lemma for the left and right Fredholm operators, and furthermore, for consistent in invertibility spectral property and consistent in Fredholm and index spectral property are investigated.
2020 Mathematics Subject Classification. 15A09, 47A53
Key words and phrases. Jacobson's lemma, generalized \(n\)-strong Drazin inverse, Fredholm operator, consistent in invertibility
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.57.1.01
References:
-
P. Aiena and M. González, On the Dunford property \((C)\) for bounded linear operators RS and SR, Integral Equations and Operator Theory 70 (2011), 561–568.
MathSciNet
CrossRef
-
P. Aiena, Fredholm and local spectral theory II. With application to Weyl-type theorems, Springer, Cham, 2018.
MathSciNet
CrossRef
-
B. A. Barnes, Common operator properties of the linear operators \(RS\) and \(SR\), Proc. Amer. Math. Soc. 126 (1998), 1055–1061.
MathSciNet
CrossRef
-
X. H. Cao, Weyl spectrum of the products of operators, J. Korean Math. Soc. 45 (2008), 771–780.
MathSciNet
CrossRef
-
X. H. Cao, H. J. Zhang and Y. H. Zhang, Consistent invertibility and Weyl's theorem, J. Math. Anal. Appl. 369 (2010), 258–264.
MathSciNet
CrossRef
-
N. Castro-González, C. Mendes-Araújo and P. Patricio, Generalized inverses of a sum in rings, Bull. Aust. Math. Soc. 82 (2010), 156–164.
MathSciNet
CrossRef
-
H. Y. Chen and M. S. Abdolyousefi, Cline's formula for g-Drazin inverses in a ring, Filomat 33 (2019), 2249–2255.
MathSciNet
CrossRef
-
H. Y. Chen and M. Sheibani, Generalized Hirano inverses in Banach algebras, Filomat, 33 (2019), 6239–6249.
MathSciNet
CrossRef
-
H. Y. Chen and M. Sheibani, Jacobson's Lemma for the generalized \(n\)-strongly Drazin inverse, arXiv:2001.00328 (2020).
-
H. Y. Chen and M. S. Abdolyousefi,Generalized Jacobson's lemma in a Banach algebra, Comm. Algebra, 49 (2021), 3263–3272.
MathSciNet
CrossRef
-
H. Y. Chen and M. Sheibani, Generalized Hirano inverses in rings, Comm. Algebra, 47 (2019), 2967–2978.
MathSciNet
CrossRef
-
R. E. Cline, An application of representations for the generalized inverse of a matrix, MRC Technical Report 592, 1965.
-
J. B. Conway, A course in functional analysis, second edition, Graduate Texts in Mathematics, Springer-Verlag, New York, 1990.
MathSciNet
CrossRef
-
G. Corach, B. Duggal and R. Harte, Extensions of Jacobson's lemma, Comm. Algebra, 41 (2013), 520–531.
MathSciNet
CrossRef
-
D. S. Cvetković-Ilić and R. E. Harte, On Jacobson's lemma and Drazin invertibility, Appl. Math. Lett. 23 (2010), 417–420.
MathSciNet
CrossRef
-
D. S. Djordjevic, Operators consistent in regularity, Publ. Math. Debrecen, 63 (2003), 175–191.
MathSciNet
-
M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly, 65 (1958), 506–514.
MathSciNet
CrossRef
-
W. B. Gong and D. G. Han, Spectrum of the products of operators and compact perturbations, Proc. Amer. Math. Soc. 120 (1994), 755–760.
MathSciNet
CrossRef
-
O. Gürgün, Properties of generalized strongly Drazin invertible elements in general rings, J. Algebra Appl. 16 (2017), 1750207, 13 pp.
MathSciNet
CrossRef
-
J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367–381.
MathSciNet
CrossRef
-
J. J. Koliha and P. Patrício, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc. 72 (2002), 137–152.
MathSciNet
CrossRef
-
Y. H. Liao, J. L. Chen and J. Cui, Cline's formula for the generalized Drazin inverse, Bull. Malays. Math. Sci. Soc. 37 (2014), 37–42.
MathSciNet
-
V. G. Miller and H. Zguitti, New extensions of Jacobson's lemma and Cline's formula, Rend. Circ. Mat. Palermo 67 (2018), 105–114.
MathSciNet
CrossRef
-
D. Mosić, Reverse order laws for the generalized strong Drazin inverses, Appl. Math. Comput. 284 (2016), 37–46.
MathSciNet
CrossRef
-
D. Mosić, Extensions of Jacobson's lemma for Drazin inverses, Aequationes Math. 91 (2017), 419–428.
MathSciNet
CrossRef
-
D. Mosić, The generalized and pseudo \(n\)-strong Drazin inverses in rings, Linear Multilinear Algebra, 69 (2021), 361–375.
MathSciNet
CrossRef
-
Y. Ren, L. Jiang and Y. Kong, Consistent invertibility and perturbations of property \((R)\), Publ. Math. Debrecen 100 (2022), 435–447.
-
Q. Xin and L. Jiang, Consistent invertibility and perturbations for property \((\omega)\), Publ. Math. Debrecen 90 (2017), 1–10.
MathSciNet
CrossRef
-
K. Yan and Q. P. Zeng, Generalized Jacobson's lemma for Drazin inverses and its applications, Linear Multilinear Algebra, 68 (2020), 81–93.
MathSciNet
CrossRef
-
Q. P. Zeng, K. Yan and S. F. Zhang, New results on common properties of the products \(AC\) and \(BA\), II, Math. Nachr. 293 (2020), 1629–1635.
MathSciNet
CrossRef
-
Q. P. Zeng, K. Yan and Z. Y. Wu, Further results on common properties of the products \(ac\) and \(bd\), Glas. Mat. Ser. III, 55(75) (2020), 267–276.
MathSciNet
CrossRef
-
Q. P. Zeng and H. J. Zhong, New results on common properties of the products \(AC\) and \(BA\), J. Math. Anal. Appl. 427 (2015), 830–840.
MathSciNet
CrossRef
-
H. Zguitti, A note on the common spectral properties for bounded linear operators, Filomat 33 (2019), 4575–4584.
MathSciNet
-
G. F. Zhang, J. L. Chen and J. Cui, Jacobson's lemma for the generalized Drazin inverse, Linear Algebra Appl. 436 (2012), 742–746.
MathSciNet
CrossRef
-
S. C. Živković-Zlatanović, D. S. Djordjević and R. E. Harte, Left-right Browder and left-right Fredholm operators, Integral Equations Operator Theory 69 (2011), 347–363.
MathSciNet
CrossRef
Glasnik Matematicki Home Page