Glasnik Matematicki, Vol. 57, No. 1 (2022), 1-15. \( \)

JACOBSON'S LEMMA FOR THE GENERALIZED \(n\)-STRONG DRAZIN INVERSES IN RINGS AND IN OPERATOR ALGEBRAS

Yanxun Ren and Lining Jiang

School of Mathematics and Statistics, Beijing Institute of Technology, 100081 Beijing, China
e-mail:renyanxun110@126.com

School of Mathematics and Statistics, Beijing Institute of Technology, 100081 Beijing, China
e-mail:jianglining@bit.edu.cn


Abstract.   In this paper, we extend Jacobson's lemma for Drazin inverses to the generalized \(n\)-strong Drazin inverses in a ring, and prove that \(1-ac\) is generalized \(n\)-strong Drazin invertible if and only if \(1-ba\) is generalized \(n\)-strong Drazin invertible, provided that \(a(ba)^{2}=abaca=acaba=(ac)^{2}a\). In addition, Jacobson's lemma for the left and right Fredholm operators, and furthermore, for consistent in invertibility spectral property and consistent in Fredholm and index spectral property are investigated.

2020 Mathematics Subject Classification.   15A09, 47A53

Key words and phrases.   Jacobson's lemma, generalized \(n\)-strong Drazin inverse, Fredholm operator, consistent in invertibility


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.57.1.01


References:

  1. P. Aiena and M. González, On the Dunford property \((C)\) for bounded linear operators RS and SR, Integral Equations and Operator Theory 70 (2011), 561–568.
    MathSciNet    CrossRef

  2. P. Aiena, Fredholm and local spectral theory II. With application to Weyl-type theorems, Springer, Cham, 2018.
    MathSciNet    CrossRef

  3. B. A. Barnes, Common operator properties of the linear operators \(RS\) and \(SR\), Proc. Amer. Math. Soc. 126 (1998), 1055–1061.
    MathSciNet    CrossRef

  4. X. H. Cao, Weyl spectrum of the products of operators, J. Korean Math. Soc. 45 (2008), 771–780.
    MathSciNet    CrossRef

  5. X. H. Cao, H. J. Zhang and Y. H. Zhang, Consistent invertibility and Weyl's theorem, J. Math. Anal. Appl. 369 (2010), 258–264.
    MathSciNet    CrossRef

  6. N. Castro-González, C. Mendes-Araújo and P. Patricio, Generalized inverses of a sum in rings, Bull. Aust. Math. Soc. 82 (2010), 156–164.
    MathSciNet    CrossRef

  7. H. Y. Chen and M. S. Abdolyousefi, Cline's formula for g-Drazin inverses in a ring, Filomat 33 (2019), 2249–2255.
    MathSciNet    CrossRef

  8. H. Y. Chen and M. Sheibani, Generalized Hirano inverses in Banach algebras, Filomat, 33 (2019), 6239–6249.
    MathSciNet    CrossRef

  9. H. Y. Chen and M. Sheibani, Jacobson's Lemma for the generalized \(n\)-strongly Drazin inverse, arXiv:2001.00328 (2020).

  10. H. Y. Chen and M. S. Abdolyousefi,Generalized Jacobson's lemma in a Banach algebra, Comm. Algebra, 49 (2021), 3263–3272.
    MathSciNet    CrossRef

  11. H. Y. Chen and M. Sheibani, Generalized Hirano inverses in rings, Comm. Algebra, 47 (2019), 2967–2978.
    MathSciNet    CrossRef

  12. R. E. Cline, An application of representations for the generalized inverse of a matrix, MRC Technical Report 592, 1965.

  13. J. B. Conway, A course in functional analysis, second edition, Graduate Texts in Mathematics, Springer-Verlag, New York, 1990.
    MathSciNet    CrossRef

  14. G. Corach, B. Duggal and R. Harte, Extensions of Jacobson's lemma, Comm. Algebra, 41 (2013), 520–531.
    MathSciNet    CrossRef

  15. D. S. Cvetković-Ilić and R. E. Harte, On Jacobson's lemma and Drazin invertibility, Appl. Math. Lett. 23 (2010), 417–420.
    MathSciNet    CrossRef

  16. D. S. Djordjevic, Operators consistent in regularity, Publ. Math. Debrecen, 63 (2003), 175–191.
    MathSciNet

  17. M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly, 65 (1958), 506–514.
    MathSciNet    CrossRef

  18. W. B. Gong and D. G. Han, Spectrum of the products of operators and compact perturbations, Proc. Amer. Math. Soc. 120 (1994), 755–760.
    MathSciNet    CrossRef

  19. O. Gürgün, Properties of generalized strongly Drazin invertible elements in general rings, J. Algebra Appl. 16 (2017), 1750207, 13 pp.
    MathSciNet    CrossRef

  20. J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367–381.
    MathSciNet    CrossRef

  21. J. J. Koliha and P. Patrício, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc. 72 (2002), 137–152.
    MathSciNet    CrossRef

  22. Y. H. Liao, J. L. Chen and J. Cui, Cline's formula for the generalized Drazin inverse, Bull. Malays. Math. Sci. Soc. 37 (2014), 37–42.
    MathSciNet

  23. V. G. Miller and H. Zguitti, New extensions of Jacobson's lemma and Cline's formula, Rend. Circ. Mat. Palermo 67 (2018), 105–114.
    MathSciNet    CrossRef

  24. D. Mosić, Reverse order laws for the generalized strong Drazin inverses, Appl. Math. Comput. 284 (2016), 37–46.
    MathSciNet    CrossRef

  25. D. Mosić, Extensions of Jacobson's lemma for Drazin inverses, Aequationes Math. 91 (2017), 419–428.
    MathSciNet    CrossRef

  26. D. Mosić, The generalized and pseudo \(n\)-strong Drazin inverses in rings, Linear Multilinear Algebra, 69 (2021), 361–375.
    MathSciNet    CrossRef

  27. Y. Ren, L. Jiang and Y. Kong, Consistent invertibility and perturbations of property \((R)\), Publ. Math. Debrecen 100 (2022), 435–447.

  28. Q. Xin and L. Jiang, Consistent invertibility and perturbations for property \((\omega)\), Publ. Math. Debrecen 90 (2017), 1–10.
    MathSciNet    CrossRef

  29. K. Yan and Q. P. Zeng, Generalized Jacobson's lemma for Drazin inverses and its applications, Linear Multilinear Algebra, 68 (2020), 81–93.
    MathSciNet    CrossRef

  30. Q. P. Zeng, K. Yan and S. F. Zhang, New results on common properties of the products \(AC\) and \(BA\), II, Math. Nachr. 293 (2020), 1629–1635.
    MathSciNet    CrossRef

  31. Q. P. Zeng, K. Yan and Z. Y. Wu, Further results on common properties of the products \(ac\) and \(bd\), Glas. Mat. Ser. III, 55(75) (2020), 267–276.
    MathSciNet CrossRef

  32. Q. P. Zeng and H. J. Zhong, New results on common properties of the products \(AC\) and \(BA\), J. Math. Anal. Appl. 427 (2015), 830–840.
    MathSciNet    CrossRef

  33. H. Zguitti, A note on the common spectral properties for bounded linear operators, Filomat 33 (2019), 4575–4584.
    MathSciNet

  34. G. F. Zhang, J. L. Chen and J. Cui, Jacobson's lemma for the generalized Drazin inverse, Linear Algebra Appl. 436 (2012), 742–746.
    MathSciNet    CrossRef

  35. S. C. Živković-Zlatanović, D. S. Djordjević and R. E. Harte, Left-right Browder and left-right Fredholm operators, Integral Equations Operator Theory 69 (2011), 347–363.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page