Glasnik Matematicki, Vol. 56, No. 2 (2021), 407-440. \( \)

REGULARITY OF A WEAK SOLUTION TO A LINEAR FLUID-COMPOSITE STRUCTURE INTERACTION PROBLEM

Marija Galić

Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10 000 Zagreb, Croatia
e-mail:marija.galic@math.hr


Abstract.   In this manuscript, we deal with the regularity of a weak solution to the fluid-composite structure interaction problem introduced in [12]. The problem describes a linear fluid-structure interaction between an incompressible, viscous fluid flow, and an elastic structure composed of a cylindrical shell supported by a mesh-like elastic structure. The fluid and the mesh-supported structure are coupled via the kinematic and dynamic boundary coupling conditions describing continuity of velocity and balance of contact forces at the fluid-structure interface. In [12], it is shown that there exists a weak solution to the described problem. By using the standard techniques from the analysis of partial differential equations we prove that such a weak solution possesses an additional regularity in both time and space variables for initial and boundary data satisfying the appropriate regularity and compatibility conditions imposed on the interface.

2020 Mathematics Subject Classification.   74F10, 76D03, 35M30

Key words and phrases.   Fluid-structure interaction, parabolic-hyperbolic coupling, regularity theory


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.56.2.11


References:

  1. S. S. Antman, Nonlinear problems of elasticity, Springer, New York, 2005.
    MathSciNet

  2. S. Badia, A. Quaini and A. Quarteroni, Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect, Comput. Methods Appl. Mech. Engrg. 197 (2008), 4216–4232.
    MathSciNet    CrossRef

  3. H. Beirão da Veiga, On the existence of strong solutions to a coupled fluid-structure evolution problem, J. Math. Fluid Mech. 6 (2004), 21–52.
    MathSciNet    CrossRef

  4. T. Bodnár, G. P. Galdi and Š. Nečasová, editors, Fluid-structure interaction and biomedical applications, Birkhäuser/Springer, Basel, 2014.
    MathSciNet

  5. M. Boulakia, S. Guerrero and T. Takahashi, Well-posedness for the coupling between a viscous incompressible fluid and an elastic structure, Nonlinearity 32 (2019), 3548–3592.
    MathSciNet    CrossRef

  6. M. Bukač, S. Čanić and B. Muha, A nonlinear fluid-structure interaction problem in compliant arteries treated with vascular stents, Appl. Math. Optim. 73 (2016), 433–473.
    MathSciNet    CrossRef

  7. M. Bukač and B. Muha, Stability and convergence analysis of the extensions of the kinematically coupled scheme for the fluid-structure interaction, SIAM J. Numer. Anal. 54 (2016), 3032–3061.
    MathSciNet    CrossRef

  8. M. Bukač, S. Čanić and B. Muha, A partitioned scheme for fluid-composite structure interaction problems, J. Comput. Phys. 281 (2015), 493–517.
    MathSciNet    CrossRef

  9. M. Bukač, S. Čanić, R. Glowinski, J. Tambača and A. Quaini, Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement, J. Comput. Phys. 235 (2013), 515–541.
    MathSciNet    CrossRef

  10. J. Butany, K. Carmichael, S. W. Leong and M. J. Collins, Coronary artery stents: identification and evaluation, Journal of clinical pathology 58 (2005), 795–804.
    CrossRef

  11. S. Čanić, New mathematics for next generation stent design, SIAM News 52 (2019), 1.

  12. S. Čanić, M. Galić, M. Ljulj, B. Muha, J. Tambača and Y. Wang, Analysis of a linear 3d fluid–mesh–shell interaction problem, Z. Angew. Math. Phys. 70 (2019), Paper No. 44, 38pp.
    MathSciNet    CrossRef

  13. S. Čanić, M. Galić and B. Muha, Analysis of a 3D nonlinear, moving boundary problem describing fluid-mesh-shell interaction, Trans. Amer. Math. Soc. 373 (2020), 6621–6681.
    MathSciNet    CrossRef

  14. S. Čanić and J. Tambača, Cardiovascular stents as PDE nets: 1D vs. 3D, IMA J. Appl. Math. 77 (2012), 748–770.
    MathSciNet    CrossRef

  15. T. Chacón Rebollo, V. Girault, F. Murat and O. Pironneau, Analysis of a coupled fluid-structure model with applications to hemodynamics, SIAM J. Numer. Anal. 54 (2016), 994–1019.
    MathSciNet    CrossRef

  16. A. Chambolle, B. Desjardins, M. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech. 7 (2005), 368–404.
    MathSciNet    CrossRef

  17. I. Chueshov and T. Fastovska, On interaction of circular cylindrical shells with a Poiseuille type flow, Evol. Equ. Control Theory 5 (2016), 605–629.
    MathSciNet    CrossRef

  18. I. Chueshov and I. Ryzhkova, On the interaction of an elastic wall with a Poiseuille-type flow, Ukrainian Math. J. 65 (2013), 158–177.
    MathSciNet    CrossRef

  19. P. G. Ciarlet, Mathematical elasticity. Vol. I. Three-dimensional elasticity, North-Holland Publishing Co., Amsterdam, 1988.
    MathSciNet

  20. P. G. Ciarlet, Mathematical elasticity. Vol. III. Theory of shells North-Holland Amsterdam, 2000.
    MathSciNet

  21. P. G. Ciarlet and V. Lods, Asymptotic analysis of linearly elastic shells. III, Justification of Koiter's shell equations, Arch. Rational Mech. Anal. 136 (1996), 191–200.
    MathSciNet    CrossRef

  22. C. Conca, F. Murat and O. Pironneau, The Stokes and Navier-Stokes equations with boundary conditions involving the pressure, Japan. J. Math. (N.S.) 20 (1994), 279–318.
    MathSciNet    CrossRef

  23. D. Coutand and S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid, Arch. Ration. Mech. Anal. 176 (2005), 25–102.
    MathSciNet    CrossRef

  24. D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations, Arch. Ration. Mech. Anal. 179 (2006), 303–352.
    MathSciNet    CrossRef

  25. B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal. 146 (1999), 59–71.
    MathSciNet    CrossRef

  26. Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem, Discrete Contin. Dyn. Syst. 9 (2003), 633–650.
    MathSciNet    CrossRef

  27. L. C. Evans, Partial differential equations, American Mathematical Society, Providence, 1998.
    MathSciNet

  28. G. P. Galdi, An introduction to the Navier-Stokes initial-boundary value problem, In Fundamental directions in mathematical fluid mechanics, Birkhäuser, Basel, 2000, 1–70.
    MathSciNet

  29. G. P. Galdi, On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications, In Handbook of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam, 2002, 653–791.
    MathSciNet

  30. G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems, Springer, New York, 2011.
    MathSciNet    CrossRef

  31. C. Grandmont and M. Hillairet, Existence of global strong solutions to a beam-fluid interaction system, Arch. Ration. Mech. Anal. 220 (2016), 1283–1333.
    MathSciNet    CrossRef

  32. G. Hou, J. Wang and A. Layton, Numerical methods for fluid-structure interaction—a review, Commun. Comput. Phys. 12 (2012), 337–377.
    MathSciNet    CrossRef

  33. M. Ignatova, I. Kukavica, I. Lasiecka and A. Tuffaha, On well-posedness and small data global existence for an interface damped free boundary fluid-structure model, Nonlinearity 27 (2014), 467–499.
    MathSciNet    CrossRef

  34. W. T. Koiter, On the foundations of the linear theory of thin elastic shells. I, II, Nederl. Akad. Wetensch. Proc. Ser. B 73 (1970), 169-182; ibid 73 (1970), 183–195.
    MathSciNet

  35. I. Kukavica and A. Tuffaha, Regularity of solutions to a free boundary problem of fluid-structure interaction, Indiana Univ. Math. J. 61 (2012), 1817–1859.
    MathSciNet    CrossRef

  36. I. Kukavica and A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem, Discrete Contin. Dyn. Syst. 32 (2012), 1355–1389.
    MathSciNet    CrossRef

  37. I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions for a fluid structure interaction system, Adv. Differential Equations 15 (2010), 231–254.
    MathSciNet

  38. I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a Navier-Stokes-Lamé system on a domain with a non-flat boundary, Nonlinearity 24 (2011), 159–176.
    MathSciNet    CrossRef

  39. D. Lengeler and M. Růžička, Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell, Arch. Ration. Mech. Anal. 211 (2014), 205–255.
    MathSciNet    CrossRef

  40. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969.
    MathSciNet

  41. B. Muha and S. Čanić, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Arch. Ration. Mech. Anal. 207 (2013), 919–968.
    MathSciNet    CrossRef

  42. B. Muha and S. Čanić, Existence of a solution to a fluid-multi-layered-structure interaction problem, J. Differential Equations 256 (2014), 658–706.
    MathSciNet    CrossRef

  43. B. Muha, Š. Nečasová and A. Radošević, A uniqueness result for 3D incompressible fluid-rigid body interaction problem, J. Math. Fluid Mech. 23 (2021), Paper No. 1, 39pp.
    MathSciNet    CrossRef

  44. J.-P. Raymond and M. Vanninathan, A fluid-structure model coupling the Navier-Stokes equations and the Lamé system, J. Math. Pures Appl. (9) 102 (2014), 546–596.
    MathSciNet    CrossRef

  45. S. Schwarzacher and M. Sroczinski, Weak-strong uniqueness for an elastic plate interacting with the Navier-Stokes equation, 2020.

  46. J. Tambača, M. Kosor, S. Čanić and D. Paniagua, Mathematical modeling of vascular stents, SIAM J. Appl. Math. 70 (2010), 1922–1952.
    MathSciNet    CrossRef

  47. R. Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
    MathSciNet

  48. S. Trifunović, Compressible fluids interacting with plates – regularity and weak-strong uniqueness, preprint, 2021.

  49. P. Zunino, J. Tambača, E. Cutrì, S. Čanić, L. Formaggia and F. Migliavacca, Integrated stent models based on dimension reduction: Review and future perspectives, Ann Biomed Eng. 44 (2016), 604–617.
    CrossRef

Glasnik Matematicki Home Page