Glasnik Matematicki, Vol. 56, No. 2 (2021), 407-440. \( \)
REGULARITY OF A WEAK SOLUTION TO A LINEAR FLUID-COMPOSITE STRUCTURE INTERACTION PROBLEM
Marija Galić
Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10 000 Zagreb, Croatia
e-mail:marija.galic@math.hr
Abstract.
In this manuscript, we deal with the regularity of a weak solution to the fluid-composite
structure interaction problem introduced in [12]. The problem describes
a linear fluid-structure interaction between an incompressible, viscous fluid flow, and an elastic
structure composed of a cylindrical shell supported by a mesh-like elastic structure.
The fluid and the mesh-supported structure are coupled via the kinematic and dynamic boundary
coupling conditions describing continuity of velocity and balance of contact forces at the fluid-structure interface.
In [12], it is shown that there exists a weak solution to the described problem.
By using the standard techniques from the analysis of partial differential equations
we prove that such a weak solution possesses an additional regularity in both time and space
variables for initial and boundary data satisfying the appropriate regularity and
compatibility conditions imposed on the interface.
2020 Mathematics Subject Classification. 74F10, 76D03, 35M30
Key words and phrases. Fluid-structure interaction, parabolic-hyperbolic
coupling, regularity theory
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.56.2.11
References:
-
S. S. Antman, Nonlinear problems of elasticity, Springer, New York, 2005.
MathSciNet
-
S. Badia, A. Quaini and A. Quarteroni, Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect, Comput. Methods Appl. Mech. Engrg. 197 (2008), 4216–4232.
MathSciNet
CrossRef
-
H. Beirão da Veiga, On the existence of strong solutions to a coupled fluid-structure evolution problem, J. Math. Fluid Mech. 6 (2004), 21–52.
MathSciNet
CrossRef
-
T. Bodnár, G. P. Galdi and Š. Nečasová, editors, Fluid-structure interaction and biomedical applications, Birkhäuser/Springer, Basel, 2014.
MathSciNet
-
M. Boulakia, S. Guerrero and T. Takahashi, Well-posedness for the coupling between a viscous incompressible fluid and an elastic structure, Nonlinearity 32 (2019), 3548–3592.
MathSciNet
CrossRef
-
M. Bukač, S. Čanić and B. Muha, A nonlinear fluid-structure interaction problem in compliant arteries treated with vascular stents, Appl. Math. Optim. 73 (2016), 433–473.
MathSciNet
CrossRef
-
M. Bukač and B. Muha, Stability and convergence analysis of the extensions of the kinematically coupled scheme for the fluid-structure interaction, SIAM J. Numer. Anal. 54 (2016), 3032–3061.
MathSciNet
CrossRef
-
M. Bukač, S. Čanić and B. Muha, A partitioned scheme for fluid-composite structure interaction problems, J. Comput. Phys. 281 (2015), 493–517.
MathSciNet
CrossRef
-
M. Bukač, S. Čanić, R. Glowinski, J. Tambača and A. Quaini, Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement, J. Comput. Phys. 235 (2013), 515–541.
MathSciNet
CrossRef
-
J. Butany, K. Carmichael, S. W. Leong and M. J. Collins, Coronary artery stents: identification and evaluation, Journal of clinical pathology 58 (2005), 795–804.
CrossRef
-
S. Čanić, New mathematics for next generation stent design, SIAM News 52 (2019), 1.
-
S. Čanić, M. Galić, M. Ljulj, B. Muha, J. Tambača and Y. Wang, Analysis of a linear 3d fluid–mesh–shell interaction problem, Z. Angew. Math. Phys. 70 (2019), Paper No. 44, 38pp.
MathSciNet
CrossRef
-
S. Čanić, M. Galić and B. Muha, Analysis of a 3D nonlinear, moving boundary problem describing fluid-mesh-shell interaction, Trans. Amer. Math. Soc. 373 (2020), 6621–6681.
MathSciNet
CrossRef
-
S. Čanić and J. Tambača, Cardiovascular stents as PDE nets: 1D vs. 3D, IMA J. Appl. Math. 77 (2012), 748–770.
MathSciNet
CrossRef
-
T. Chacón Rebollo, V. Girault, F. Murat and O. Pironneau, Analysis of a coupled fluid-structure model with applications to hemodynamics, SIAM J. Numer. Anal. 54 (2016), 994–1019.
MathSciNet
CrossRef
-
A. Chambolle, B. Desjardins, M. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech. 7 (2005), 368–404.
MathSciNet
CrossRef
-
I. Chueshov and T. Fastovska, On interaction of circular cylindrical shells with a Poiseuille type flow, Evol. Equ. Control Theory 5 (2016), 605–629.
MathSciNet
CrossRef
-
I. Chueshov and I. Ryzhkova, On the interaction of an elastic wall with a Poiseuille-type flow, Ukrainian Math. J. 65 (2013), 158–177.
MathSciNet
CrossRef
-
P. G. Ciarlet, Mathematical elasticity. Vol. I. Three-dimensional elasticity, North-Holland Publishing Co., Amsterdam, 1988.
MathSciNet
-
P. G. Ciarlet, Mathematical elasticity. Vol. III. Theory of shells North-Holland Amsterdam, 2000.
MathSciNet
-
P. G. Ciarlet and V. Lods, Asymptotic analysis of linearly elastic shells. III, Justification of Koiter's shell equations, Arch. Rational Mech. Anal. 136 (1996), 191–200.
MathSciNet
CrossRef
-
C. Conca, F. Murat and O. Pironneau, The Stokes and Navier-Stokes equations with boundary conditions involving the pressure, Japan. J. Math. (N.S.) 20 (1994), 279–318.
MathSciNet
CrossRef
-
D. Coutand and S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid, Arch. Ration. Mech. Anal. 176 (2005), 25–102.
MathSciNet
CrossRef
-
D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations, Arch. Ration. Mech. Anal. 179 (2006), 303–352.
MathSciNet
CrossRef
-
B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal. 146 (1999), 59–71.
MathSciNet
CrossRef
-
Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem, Discrete Contin. Dyn. Syst. 9 (2003), 633–650.
MathSciNet
CrossRef
-
L. C. Evans, Partial differential equations, American Mathematical Society, Providence, 1998.
MathSciNet
-
G. P. Galdi, An introduction to the Navier-Stokes initial-boundary value problem, In Fundamental directions in mathematical fluid mechanics, Birkhäuser, Basel, 2000, 1–70.
MathSciNet
-
G. P. Galdi, On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications, In Handbook of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam, 2002, 653–791.
MathSciNet
-
G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems, Springer, New York, 2011.
MathSciNet
CrossRef
-
C. Grandmont and M. Hillairet, Existence of global strong solutions to a beam-fluid interaction system, Arch. Ration. Mech. Anal. 220 (2016), 1283–1333.
MathSciNet
CrossRef
-
G. Hou, J. Wang and A. Layton, Numerical methods for fluid-structure interaction—a review, Commun. Comput. Phys. 12 (2012), 337–377.
MathSciNet
CrossRef
-
M. Ignatova, I. Kukavica, I. Lasiecka and A. Tuffaha, On well-posedness and small data global existence for an interface damped free boundary fluid-structure model, Nonlinearity 27 (2014), 467–499.
MathSciNet
CrossRef
-
W. T. Koiter, On the foundations of the linear theory of thin elastic shells. I, II, Nederl. Akad. Wetensch. Proc. Ser. B 73 (1970), 169-182; ibid 73 (1970), 183–195.
MathSciNet
-
I. Kukavica and A. Tuffaha, Regularity of solutions to a free boundary problem of fluid-structure interaction, Indiana Univ. Math. J. 61 (2012), 1817–1859.
MathSciNet
CrossRef
-
I. Kukavica and A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem, Discrete Contin. Dyn. Syst. 32 (2012), 1355–1389.
MathSciNet
CrossRef
-
I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions for a fluid structure interaction system, Adv. Differential Equations 15 (2010), 231–254.
MathSciNet
-
I. Kukavica, A. Tuffaha and M. Ziane, Strong solutions to a Navier-Stokes-Lamé system on a domain with a non-flat boundary, Nonlinearity 24 (2011), 159–176.
MathSciNet
CrossRef
-
D. Lengeler and M. Růžička, Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell, Arch. Ration. Mech. Anal. 211 (2014), 205–255.
MathSciNet
CrossRef
-
J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969.
MathSciNet
-
B. Muha and S. Čanić, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Arch. Ration. Mech. Anal. 207 (2013), 919–968.
MathSciNet
CrossRef
-
B. Muha and S. Čanić, Existence of a solution to a fluid-multi-layered-structure interaction problem, J. Differential Equations 256 (2014), 658–706.
MathSciNet
CrossRef
-
B. Muha, Š. Nečasová and A. Radošević, A uniqueness result for 3D incompressible fluid-rigid body interaction problem, J. Math. Fluid Mech. 23 (2021), Paper No. 1, 39pp.
MathSciNet
CrossRef
-
J.-P. Raymond and M. Vanninathan, A fluid-structure model coupling the Navier-Stokes equations and the Lamé system, J. Math. Pures Appl. (9) 102 (2014), 546–596.
MathSciNet
CrossRef
-
S. Schwarzacher and M. Sroczinski, Weak-strong uniqueness for an elastic plate interacting with the Navier-Stokes equation, 2020.
-
J. Tambača, M. Kosor, S. Čanić and D. Paniagua, Mathematical modeling of vascular stents, SIAM J. Appl. Math. 70 (2010), 1922–1952.
MathSciNet
CrossRef
-
R. Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
MathSciNet
-
S. Trifunović, Compressible fluids interacting with plates – regularity and weak-strong uniqueness, preprint, 2021.
-
P. Zunino, J. Tambača, E. Cutrì, S. Čanić, L. Formaggia and F. Migliavacca, Integrated stent models based on dimension reduction: Review and future perspectives, Ann Biomed Eng. 44 (2016), 604–617.
CrossRef
Glasnik Matematicki Home Page