Glasnik Matematicki, Vol. 56, No. 2 (2021), 391-406. \( \)

ON HOMOTOPY NILPOTENCY

Marek Golasiński

Faculty of Mathematics and Computer Science, University of Warmia and Mazury, Słoneczna 54 Street, 10-710 Olsztyn, Poland
e-mail:marekg@matman.uwm.edu.pl


Abstract.   We review established and recent results on the homotopy nilpotence of spaces. In particular, the homotopy nilpotency of the loop spaces \(\Omega(G/K)\) of homogenous spaces \(G/K\) for a compact Lie group \(G\) and its closed homotopy nilpotent subgroup \(K \lt G\) is discussed.

2020 Mathematics Subject Classification.   55P15, 20F18, 55P35, 55P60.

Key words and phrases.   Classical Lie group, co-category, flag manifold, (oriented) flat product, (oriented) Grassmann manifold, homogeneous space, nilpotency class, \(H\)-fibration, \(n\)-fold commutator map, \(H\)-space, loop space, Morava \(K\)-theory, \(p\)-localization, Postnikov system, projective space, sphere, Stiefel manifold, suspension space, smash product


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.56.2.10


References:

  1. M. Arkowitz and C. R. Curjel, Some properties of the exotic multiplications on the three-sphere, Quart. J. Math. Oxford Ser. (2) 20 (1969), 171–176.
    MathSciNet    CrossRef

  2. M. Arkowitz, Introduction to homotopy theory, Springer, New York, 2011.
    MathSciNet    CrossRef

  3. C. Berger and D. Bourn, Central reflections and nilpotency in exact Mal'tsev categories, J. Homotopy Relat. Struct. 12 (2017), 765–835.
    MathSciNet    CrossRef

  4. I. Berstein and T. Ganea, Homotopical nilpotency, Illinois J. Math. 5 (1961), 99–130.
    MathSciNet    CrossRef

  5. G. Biedermann and W. G. Dwyer, Homotopy nilpotent groups, Algebr. Geom. Topol. 10 (2010), 33–61.
    MathSciNet    CrossRef

  6. A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Springer-Verlag, Berlin-New York, 1972.
    MathSciNet    CrossRef

  7. C. Costoya, J. Scherer and A. Viruel, A torus theorem for homotopy nilpotent loop spaces, Ark. Mat. 56 (2018), 53–71.
    MathSciNet    CrossRef

  8. M. C. Crabb, W. A. Sutherland and P. Zhang, Homotopy nilpotency, Quart. J. Math. Oxford Ser. (2) 50 (1999), 179–196.
    MathSciNet    CrossRef

  9. E. S. Devinatz, M. J. Hopkins and J. H. Smith, Nilpotence and stable homotopy theory. I, Ann. of Math. (2) 128 (1988), 207–241.
    MathSciNet    CrossRef

  10. E. Dror, A generalization of the Whitehead theorem, Symposium on Algebraic Topology, Springer, Berlin, 1971, 13–22.
    MathSciNet

  11. R. Eldred, Goodwillie calculus via adjunction and LS cocategory, Homology Homotopy Appl. 18 (2016), 31–58.
    MathSciNet    CrossRef

  12. T. Ganea, Lusternik-Schnirelmann category and cocategory, Proc. London Math. Soc. (3) 10 (1960), 623–639.
    MathSciNet    CrossRef

  13. T. Ganea, On the loop spaces of projective spaces, J. Math. Mech. 16 (1967), 853–858.
    MathSciNet

  14. W. J. Gilbert, Homotopical nilpotence of the seven sphere, Proc. Amer. Math. Soc. 32 (1972), 621–622.
    MathSciNet    CrossRef

  15. M. Golasiński, Homotopy nilpotency of some homogeneous spaces, to appear in Manuscripta Math.

  16. M. Golasiński, D. Gonçalves and P. Wong, Exponents of \([\Omega (\mathbb{S}^{r+1}),\Omega (Y)]\), In Algebraic topology and related topics, Birkhäuser/Springer, Singapore, 2019, 103–122.
    MathSciNet    CrossRef

  17. M. Golasiński, D. L. Gonçalves and P. Wong, On exponent and nilpotency of \([\Omega\mathbb{S}^{r+1},\Omega(\mathbb{K}P^n)]\), Topology Appl. 293 (2021), Paper No. 107567, 28 pp.
    MathSciNet    CrossRef

  18. M. J. Hopkins, Formulations of cocategory and the iterated suspension, In Algebraic homotopy and local algebra, Astérisque 113–114, Soc. Math. France, Paris, 1984, 212–226.
    MathSciNet

  19. M. J. Hopkins, Nilpotence and finite \(H\)-spaces, Israel J. Math. 66 (1989), 238–246.
    MathSciNet    CrossRef

  20. M. Hovey, Lusternik-Schnirelmann cocategory, Illinois J. Math. 37 (1993), 224–239.
    MathSciNet    CrossRef

  21. I. M. James, On H-spaces and their homotopy groups, Quart. J. Math. Oxford Ser. (2) 11 (1960), 161–179.
    MathSciNet    CrossRef

  22. I. M. James, On fibre spaces and nilpotency. II, Math. Proc. Cambridge Philos. Soc. 86 (1979), 215–217.
    MathSciNet    CrossRef

  23. D. W. Kahn, A note on \(H\)-spaces and Postnikov systems of spheres, Proc. Amer. Math. Soc. 15 (1964), 300–307.
    MathSciNet    CrossRef

  24. S. Kaji and D. Kishimoto, Homotopy nilpotency in \(p\)-regular loop spaces, Math. Z. 264 (2010), 209–224.
    MathSciNet    CrossRef

  25. D. Kishimoto, Homotopy nilpotency in localized \(SU(n)\), Homology Homotopy Appl. 11 (2009), 61–79.
    MathSciNet    CrossRef

  26. W. Meier, Homotopy nilpotence and localization, Math. Z. 161 (1978), 169–183.
    MathSciNet    CrossRef

  27. A. Murillo and A. Viruel, Lusternik-Schnirelmann cocategory: A Whitehead dual approach, in: Cohomological methods in homotopy theory, Birkhäuser, Basel, 2001, 323–347.
    MathSciNet    CrossRef

  28. G.J. Porter, Homotopical nilpotence of \(\mathbb{S}^3\), Proc. Amer. Math. Soc. 15 (1964), 681–682.
    MathSciNet    CrossRef

  29. V. K. Rao, \(\mbox{Spin}(n)\) is not homotopy nilpotent for \(n\ge 7\), Topology 32 (1993), 239–249.
    MathSciNet    CrossRef

  30. V. K. Rao, Homotopy nilpotent Lie groups have no torsion in homology, Manuscripta Math. 92 (1997), 455–462.
    MathSciNet    CrossRef

  31. V. P. Snaith, Some nilpotent \(H\)-spaces, Osaka Math. J. 13 (1976), 145–156.
    MathSciNet    CrossRef

  32. J. D. Stasheff, H-spaces from a homotopy point of view, Springer-Verlag, Berlin-New York, 1970.
    MathSciNet    CrossRef

  33. S. Theriault, The dual polyhedral product, cocategory and nilpotence, Adv. Math. 340 (2018), 138–192.
    MathSciNet    CrossRef

  34. H. Toda, Composition methods in homotopy groups of spheres, Princeton University Press, Princeton, New Jersey, 1962.
    MathSciNet    CrossRef

  35. G. W. Whitehead, On products in homotopy groups, Ann. of Math. (2) 47 (1946), 460–475.
    MathSciNet    CrossRef

  36. G. W. Whitehead, On mapping into group-like spaces, Comment. Math. Helv. 28 (1954), 320–328.
    MathSciNet    CrossRef

  37. N. Yagita, Homotopy nilpotency for simply connected Lie groups, Bull. London Math. Soc. 25 (1993), 481–486.
    MathSciNet    CrossRef

  38. D. Yau, Clapp-Puppe type Lusternik-Schnirelmann (co)category in a model category, J. Korean Math. Soc. 39 (2002), 163–191.

  39. A. Zabrodsky, Hopf spaces, North-Holland, Amsterdam-New York-Oxford, 1976.
    MathSciNet

Glasnik Matematicki Home Page