Glasnik Matematicki, Vol. 56, No. 2 (2021), 375-390. \( \)
SEMIFLOWS AND INTRINSIC SHAPE IN TOPOLOGICAL SPACES
Martin Shoptrajanov and Nikita Shekutkovski
Institute of Mathematics, Ss. Cyril and Methodius University, 10 00 Skopje, R.N. Macedonia
e-mail:martin@pmf.ukim.mk
e-mail:nikita@pmf.ukim.mk
Abstract.
In this paper we apply the intrinsic approach to shape to study attractors in topological spaces.
2020 Mathematics Subject Classification. 54H20, 54C56, 37B20, 37B25
Key words and phrases. Shape, intrinsic shape, normal coverings, attractor, multi-valued functions, multi-nets, Lyapunov functions.
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.56.2.09
References:
-
K. Borsuk, Theory of shape, PWN–Polish Scientific Publishers, Warsaw, 1975.
MathSciNet
-
B. A. Bogatyi and V. I. Gutsu, On the structure of attracting compacta, Differentsial'nye Uravneniya 25 (1989), 907–909, 920.
MathSciNet
-
J. M. Ball, Stability theory for an extensible beam, J. Differential Equations 14 (1973), 399–418.
MathSciNet
CrossRef
-
N. P. Bhatia and G. P. Szegö, Stability theory of dynamical systems, Springer-Verlag, New York-Berlin, 1970.
MathSciNet
-
Z. Čerin, Shape via multi-nets, Tsukuba J. Math. 19 (1995), 245–268.
MathSciNet
CrossRef
-
A. Dold, Lectures on algebraic topology, Springer-Verlag, New York-Berlin, 1972.
MathSciNet
-
S. Eilenberg and N. Steenrod, Foundations of algebraic topology, 15, Princeton University Press, New Jersey, 1952.
MathSciNet
-
J. E. Felt, \(\varepsilon\)-continuity and shape, Procedings of the American Mathematical society 46 (1974), 426–430.
MathSciNet
CrossRef
-
A. Giraldo, M. A. Morón, F. R. Ruiz Del Portal and J. M. R. Sanjurjo, Shape of global attractors in topological spaces, Nonlinear Anal. 60 (2005), 837–847.
MathSciNet
CrossRef
-
M. Gobbino and M. Sardella, On the connectedness of attractors for dynamical systems, J. Differential Equations 133 (1997), 1–14.
MathSciNet
CrossRef
-
B. Günter and J. Segal, Every attractor of a flow on a manifold has the shape of a finite polyhedron, Proc. Amer. Math. Soc. 119 (1993), 321–329.
MathSciNet
CrossRef
-
A. Giraldo and J. M. R. Sanjurjo, On the global structure of invariant regions of flows with asymptotically stable attractors, Math. Z. 232 (1999), 739–746.
MathSciNet
CrossRef
-
N. R. Howes, Modern analysis and topology, Springer-Verlag, New York, 1995.
MathSciNet
CrossRef
-
H. M. Hastings, A higher-dimensional Poincare-Bendixson theorem, Glas. Mat. Ser. III 14(34) (1979), 263–268.
MathSciNet
-
L. Kapitanski and I. Rodnianski, Shape and Morse theory of attractors, Comm. Pure Appl. Math. 53 (2000), 218–242.
MathSciNet
CrossRef
-
D. Li, J. Wang and Y. Xiong, Attractors of local semiflows on topological spaces, J. Korean Math. Soc. 54 (2017), 773–791.
MathSciNet
CrossRef
-
S. Mardešić, Shapes for topological spaces, General Topology and Appl. 3 (1973), 265–282.
MathSciNet
-
M. Mrozek, Shape index and other indices of Conley type for local maps on locally compact Hausdorff spaces, Fund. Math. 145 (1994), 15–37.
MathSciNet
-
V. V. Nemytskii and V. V. Stepanov, Kacestvennaya teoriya differencial'nyh urovnenii, OGIZ, Moscow, 1947, Qualitative theory of differential equations, Princeton University Press, Princeton, 1960.
MathSciNet
MathSciNet
-
S. Y. Pilyugin, Introduction to structurally stable systems of differential equations, Birkhaüser Verlag, 1992.
MathSciNet
CrossRef
-
J. C. Robinson, Infinite dimensional dynamical systems, Cambridge University Press, Cambridge, 2001.
MathSciNet
CrossRef
-
J. T.Roggers, The shape of a cross-section of the solution funnel of an ordinary differential equation, IIlinois J. Math. 21 (1977), 420–426.
MathSciNet
Link
-
L. Rubin and J. Sanders, Compactly generated shape, General Topology and Appl. 4 (1974), 73–83.
MathSciNet
-
J. W. Robbin and D. Salomon, Dynamical systems, shape theory and the Conley index, Ergodic Theory Dynam. Systems \(8^*\) (1988), 375–393.
MathSciNet
CrossRef
-
J. J. Sánchez-Gabites, Dynamical systems and shape, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 102 (2008), 127–159.
MathSciNet
CrossRef
-
J. M. R. Sanjurjo, A noncontinuous description of the shape category of compacta, Quart. J. Math. Oxford Ser. (2) 40 (1989), 351–359.
MathSciNet
CrossRef
-
J. M. R. Sanjurjo, Shape morphisms and small multivalued maps, Math. Japon. 35 (1990), 713–717.
MathSciNet
-
J. M. R. Sanjurjo, Stability, attraction and shape: a topological study of flows, in Topological methods in nonlinear analysis, Juliusz Schauder Cent. Nonlinear Stud., Toruń, 2011, 93–122.
MathSciNet
-
J. M. R. Sanjurjo, An intrinsic description of shape, Trans. Amer. Math. Soc. 329 (1992), 625–636.
MathSciNet
CrossRef
-
N. Shekutkovski, One property of components of chain recurrent set, Regul. Chaotic Dyn. 20 (2015), 184–188.
MathSciNet
CrossRef
-
N. Shekutkovski and M. Shoptrajanov, Intrinsic shape of the chain recurrent set, Topology Appl. 202 (2016), 117–126.
MathSciNet
CrossRef
Glasnik Matematicki Home Page