Glasnik Matematicki, Vol. 56, No. 2 (2021), 375-390. \( \)

SEMIFLOWS AND INTRINSIC SHAPE IN TOPOLOGICAL SPACES

Martin Shoptrajanov and Nikita Shekutkovski

Institute of Mathematics, Ss. Cyril and Methodius University, 10 00 Skopje, R.N. Macedonia
e-mail:martin@pmf.ukim.mk
e-mail:nikita@pmf.ukim.mk


Abstract.   In this paper we apply the intrinsic approach to shape to study attractors in topological spaces.

2020 Mathematics Subject Classification.   54H20, 54C56, 37B20, 37B25

Key words and phrases.   Shape, intrinsic shape, normal coverings, attractor, multi-valued functions, multi-nets, Lyapunov functions.


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.56.2.09


References:

  1. K. Borsuk, Theory of shape, PWN–Polish Scientific Publishers, Warsaw, 1975.
    MathSciNet

  2. B. A. Bogatyi and V. I. Gutsu, On the structure of attracting compacta, Differentsial'nye Uravneniya 25 (1989), 907–909, 920.
    MathSciNet

  3. J. M. Ball, Stability theory for an extensible beam, J. Differential Equations 14 (1973), 399–418.
    MathSciNet    CrossRef

  4. N. P. Bhatia and G. P. Szegö, Stability theory of dynamical systems, Springer-Verlag, New York-Berlin, 1970.
    MathSciNet

  5. Z. Čerin, Shape via multi-nets, Tsukuba J. Math. 19 (1995), 245–268.
    MathSciNet    CrossRef

  6. A. Dold, Lectures on algebraic topology, Springer-Verlag, New York-Berlin, 1972.
    MathSciNet

  7. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, 15, Princeton University Press, New Jersey, 1952.
    MathSciNet

  8. J. E. Felt, \(\varepsilon\)-continuity and shape, Procedings of the American Mathematical society 46 (1974), 426–430.
    MathSciNet    CrossRef

  9. A. Giraldo, M. A. Morón, F. R. Ruiz Del Portal and J. M. R. Sanjurjo, Shape of global attractors in topological spaces, Nonlinear Anal. 60 (2005), 837–847.
    MathSciNet    CrossRef

  10. M. Gobbino and M. Sardella, On the connectedness of attractors for dynamical systems, J. Differential Equations 133 (1997), 1–14.
    MathSciNet    CrossRef

  11. B. Günter and J. Segal, Every attractor of a flow on a manifold has the shape of a finite polyhedron, Proc. Amer. Math. Soc. 119 (1993), 321–329.
    MathSciNet    CrossRef

  12. A. Giraldo and J. M. R. Sanjurjo, On the global structure of invariant regions of flows with asymptotically stable attractors, Math. Z. 232 (1999), 739–746.
    MathSciNet    CrossRef

  13. N. R. Howes, Modern analysis and topology, Springer-Verlag, New York, 1995.
    MathSciNet    CrossRef

  14. H. M. Hastings, A higher-dimensional Poincare-Bendixson theorem, Glas. Mat. Ser. III 14(34) (1979), 263–268.
    MathSciNet

  15. L. Kapitanski and I. Rodnianski, Shape and Morse theory of attractors, Comm. Pure Appl. Math. 53 (2000), 218–242.
    MathSciNet    CrossRef

  16. D. Li, J. Wang and Y. Xiong, Attractors of local semiflows on topological spaces, J. Korean Math. Soc. 54 (2017), 773–791.
    MathSciNet    CrossRef

  17. S. Mardešić, Shapes for topological spaces, General Topology and Appl. 3 (1973), 265–282.
    MathSciNet

  18. M. Mrozek, Shape index and other indices of Conley type for local maps on locally compact Hausdorff spaces, Fund. Math. 145 (1994), 15–37.
    MathSciNet

  19. V. V. Nemytskii and V. V. Stepanov, Kacestvennaya teoriya differencial'nyh urovnenii, OGIZ, Moscow, 1947, Qualitative theory of differential equations, Princeton University Press, Princeton, 1960.
    MathSciNet    MathSciNet

  20. S. Y. Pilyugin, Introduction to structurally stable systems of differential equations, Birkhaüser Verlag, 1992.
    MathSciNet    CrossRef

  21. J. C. Robinson, Infinite dimensional dynamical systems, Cambridge University Press, Cambridge, 2001.
    MathSciNet    CrossRef

  22. J. T.Roggers, The shape of a cross-section of the solution funnel of an ordinary differential equation, IIlinois J. Math. 21 (1977), 420–426.
    MathSciNet    Link

  23. L. Rubin and J. Sanders, Compactly generated shape, General Topology and Appl. 4 (1974), 73–83.
    MathSciNet

  24. J. W. Robbin and D. Salomon, Dynamical systems, shape theory and the Conley index, Ergodic Theory Dynam. Systems \(8^*\) (1988), 375–393.
    MathSciNet    CrossRef

  25. J. J. Sánchez-Gabites, Dynamical systems and shape, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 102 (2008), 127–159.
    MathSciNet    CrossRef

  26. J. M. R. Sanjurjo, A noncontinuous description of the shape category of compacta, Quart. J. Math. Oxford Ser. (2) 40 (1989), 351–359.
    MathSciNet    CrossRef

  27. J. M. R. Sanjurjo, Shape morphisms and small multivalued maps, Math. Japon. 35 (1990), 713–717.
    MathSciNet

  28. J. M. R. Sanjurjo, Stability, attraction and shape: a topological study of flows, in Topological methods in nonlinear analysis, Juliusz Schauder Cent. Nonlinear Stud., Toruń, 2011, 93–122.
    MathSciNet

  29. J. M. R. Sanjurjo, An intrinsic description of shape, Trans. Amer. Math. Soc. 329 (1992), 625–636.
    MathSciNet    CrossRef

  30. N. Shekutkovski, One property of components of chain recurrent set, Regul. Chaotic Dyn. 20 (2015), 184–188.
    MathSciNet    CrossRef

  31. N. Shekutkovski and M. Shoptrajanov, Intrinsic shape of the chain recurrent set, Topology Appl. 202 (2016), 117–126.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page