Glasnik Matematicki, Vol. 56, No. 2 (2021), 329-341. \( \)

CONTINUITY OF GENERALIZED RIESZ POTENTIALS FOR DOUBLE PHASE FUNCTIONALS WITH VARIABLE EXPONENTS

Takao Ohno and Tetsu Shimomura

Faculty of Education, Oita University, Dannoharu Oita-city 870-1192, Japan
e-mail:t-ohno@oita-u.ac.jp

Department of Mathematics, Graduate School of Humanities and Social Sciences, Hiroshima University, Higashi-Hiroshima 739-8524, Japan
e-mail:tshimo@hiroshima-u.ac.jp


Abstract.   In this note, we discuss the continuity of generalized Riesz potentials \( I_{\rho}f\) of functions in Morrey spaces \(L^{\Phi,\nu(\cdot)}(G)\) of double phase functionals with variable exponents.

2020 Mathematics Subject Classification.   31B15, 46E35

Key words and phrases.   Riesz potentials, Morrey spaces, double phase functionals, continuity


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.56.2.07


References:

  1. P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57 (2018), 761–777.
    MathSciNet    CrossRef

  2. S. S. Byun, S. Liang and S. Zheng, Nonlinear gradient estimates for double phase elliptic problems with irregular double obstacles, Proc. Amer. Math. Soc. 147 (2019), 3839–3854.
    MathSciNet    CrossRef

  3. S. S. Byun and H.-S. Lee, Calderón-Zygmund estimates for elliptic double phase problems with variable exponents, J. Math. Anal. Appl. 501 (2021), 124015.
    MathSciNet    CrossRef

  4. M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Rat. Mech. Anal. 215 (2015), 443–496.
    MathSciNet    CrossRef

  5. M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015), 219–273.
    MathSciNet    CrossRef

  6. Eridani, H. Gunawan, E. Nakai and Y. Sawano, Characterizations for the generalized fractional integral operators on Morrey spaces, Math. Ineq. Appl. 17 (2014), 761–777.
    MathSciNet    CrossRef

  7. C. De Filippis and G. Mingione, Manifold constrained non-uniformly elliptic problems, J. Geom. Anal. 30 (2020), no. 2, 1661–1723.
    MathSciNet    CrossRef

  8. P. Hästö and J. Ok, Maximal regularity for local minimizers of non-autonomous functionals, to appear in J. Eur. Math. Soc.
    Link

  9. F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math., 137 (2013), 76–96.
    MathSciNet    CrossRef

  10. F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's inequality for double phase functionals with variable exponents, Forum Math. 31 (2019), 517–527.
    MathSciNet    CrossRef

  11. F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Trudinger's inequality for double phase functionals with variable exponents, Czechoslovak Math. J. 71 (2021), 511–528.
    MathSciNet    CrossRef

  12. Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Campanato-Morrey spaces for the double phase functionals, Rev. Mat. Complut. 33 (2020), 817–834.
    MathSciNet    CrossRef

  13. Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Campanato-Morrey spaces for the double phase functionals with variable exponents, Nonlinear Anal. 197 (2020), article no. 111827, 19 pp.
    MathSciNet    CrossRef

  14. Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent, Complex Var. Elliptic Equ. 56, (2011), 671–695.
    MathSciNet    CrossRef

  15. Y. Mizuta, E. Nakai, Y. Sawano and T. Shimomura, Gagliardo-Nirenberg inequality for generalized Riesz potentials of functions in Orlicz-Musielak spaces, Arch. Math. 98 (2012), 253–263.
    MathSciNet    CrossRef

  16. Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's theorem for double phase functionals, Math. Ineq. Appl. 23 (2020), 17–33.
    MathSciNet    CrossRef

  17. Y. Mizuta and T. Shimomura, Differentiability and Hölder continuity of Riesz potentials of Orlicz functions, Analysis (Munich) 20 (2000), 201–223.
    MathSciNet    CrossRef

  18. C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126–166.
    MathSciNet    CrossRef

  19. J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag Berlin Heidelberg, 1983.

  20. S. Nagayasu and H. Wadade, Characterization of the critical Sobolev space on the optimal singularity at the origin, J. Funct. Anal. 258 (2010), 3725–3757.
    MathSciNet    CrossRef

  21. E. Nakai, On generalized fractional integrals, Taiwan. J. Math. 5 (2001), 587–602.
    MathSciNet    CrossRef

  22. A. Ourraoui and M. A. Ragusa, An existence result for a class of \(p(x)\)-anisotropic type equations, Symmetry 13 (2021), 633.

  23. C. Peréz, Sharp \(L^p\)-weighted Sobolev inequalities, Ann. Inst. Fourier (Grenoble) 45 (1995), 809–824.
    MathSciNet    Link

  24. E. Pustylnik, Generalized potential type operators on rearrangement invariant spaces, Israel Math. Conf. Proc. 13 (1999), 161–171.
    MathSciNet

  25. M. A. Ragusa and A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal. 9 (2020), 710–728.
    MathSciNet    CrossRef

  26. Y. Sawano and T. Shimomura, Boundedness of the generalized fractional integral operators on generalized Morrey spaces over metric measure spaces, Z. Anal. Anwend. 36 (2017), 159–190.
    MathSciNet    CrossRef

  27. Y. Sawano, S. Sugano and H. Tanaka, Orlicz-Morrey spaces and fractional operators, Potential Anal. 36 (2012), 517–556.
    MathSciNet    CrossRef

  28. T. Shimomura and Y. Mizuta, Taylor expansion of Riesz potentials, Hiroshima Math. J. 25 (1995), 595–621.
    MathSciNet    Link

  29. A. Tachikawa, Boundary regularity of minimizers of double phase functionals, J. Math. Anal. Appl. 501 (2021), 123946, 34 pp.
    MathSciNet    CrossRef

  30. V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 675–710.
    MathSciNet

Glasnik Matematicki Home Page