Glasnik Matematicki, Vol. 56, No. 2 (2021), 329-341. \( \)
CONTINUITY OF GENERALIZED RIESZ POTENTIALS FOR DOUBLE PHASE FUNCTIONALS WITH VARIABLE EXPONENTS
Takao Ohno and Tetsu Shimomura
Faculty of Education, Oita University, Dannoharu Oita-city 870-1192, Japan
e-mail:t-ohno@oita-u.ac.jp
Department of Mathematics, Graduate School of Humanities and Social Sciences, Hiroshima University, Higashi-Hiroshima 739-8524, Japan
e-mail:tshimo@hiroshima-u.ac.jp
Abstract.
In this note, we discuss the continuity of generalized Riesz potentials \( I_{\rho}f\) of functions in Morrey spaces \(L^{\Phi,\nu(\cdot)}(G)\) of double phase functionals with variable exponents.
2020 Mathematics Subject Classification. 31B15, 46E35
Key words and phrases. Riesz potentials, Morrey spaces, double phase functionals, continuity
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.56.2.07
References:
-
P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57 (2018), 761–777.
MathSciNet
CrossRef
-
S. S. Byun, S. Liang and S. Zheng, Nonlinear gradient estimates for double phase elliptic problems with irregular double obstacles, Proc. Amer. Math. Soc. 147 (2019), 3839–3854.
MathSciNet
CrossRef
-
S. S. Byun and H.-S. Lee, Calderón-Zygmund estimates for elliptic double phase problems with variable exponents, J. Math. Anal. Appl. 501 (2021), 124015.
MathSciNet
CrossRef
-
M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Rat. Mech. Anal. 215 (2015), 443–496.
MathSciNet
CrossRef
-
M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015), 219–273.
MathSciNet
CrossRef
-
Eridani, H. Gunawan, E. Nakai and Y. Sawano, Characterizations for the generalized fractional integral operators on Morrey spaces, Math. Ineq. Appl. 17 (2014), 761–777.
MathSciNet
CrossRef
-
C. De Filippis and G. Mingione, Manifold constrained non-uniformly elliptic problems, J. Geom. Anal. 30 (2020), no. 2, 1661–1723.
MathSciNet
CrossRef
-
P. Hästö and J. Ok, Maximal regularity for local minimizers of non-autonomous functionals, to appear in J. Eur. Math. Soc.
Link
-
F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math., 137 (2013), 76–96.
MathSciNet
CrossRef
-
F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's inequality for double phase functionals with variable exponents, Forum Math. 31 (2019), 517–527.
MathSciNet
CrossRef
-
F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Trudinger's inequality for double phase functionals with variable exponents, Czechoslovak Math. J. 71 (2021), 511–528.
MathSciNet
CrossRef
-
Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Campanato-Morrey spaces for the double phase functionals, Rev. Mat. Complut. 33 (2020), 817–834.
MathSciNet
CrossRef
-
Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Campanato-Morrey spaces for the double phase functionals with variable exponents, Nonlinear Anal. 197 (2020), article no. 111827, 19 pp.
MathSciNet
CrossRef
-
Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent, Complex Var. Elliptic Equ. 56, (2011), 671–695.
MathSciNet
CrossRef
-
Y. Mizuta, E. Nakai, Y. Sawano and T. Shimomura, Gagliardo-Nirenberg inequality for generalized Riesz potentials of functions in Orlicz-Musielak spaces, Arch. Math. 98 (2012), 253–263.
MathSciNet
CrossRef
-
Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's theorem for double phase functionals, Math. Ineq. Appl. 23 (2020), 17–33.
MathSciNet
CrossRef
-
Y. Mizuta and T. Shimomura, Differentiability and Hölder continuity of Riesz potentials of Orlicz functions, Analysis (Munich) 20 (2000), 201–223.
MathSciNet
CrossRef
-
C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126–166.
MathSciNet
CrossRef
-
J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag Berlin Heidelberg, 1983.
-
S. Nagayasu and H. Wadade, Characterization of the critical Sobolev space on the optimal singularity at the origin, J. Funct. Anal. 258 (2010), 3725–3757.
MathSciNet
CrossRef
-
E. Nakai, On generalized fractional integrals, Taiwan. J. Math. 5 (2001), 587–602.
MathSciNet
CrossRef
-
A. Ourraoui and M. A. Ragusa, An existence result for a class of \(p(x)\)-anisotropic type equations, Symmetry 13 (2021), 633.
-
C. Peréz, Sharp \(L^p\)-weighted Sobolev inequalities, Ann. Inst. Fourier (Grenoble) 45 (1995), 809–824.
MathSciNet
Link
-
E. Pustylnik, Generalized potential type operators on rearrangement invariant spaces, Israel Math. Conf. Proc. 13 (1999), 161–171.
MathSciNet
-
M. A. Ragusa and A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal. 9 (2020), 710–728.
MathSciNet
CrossRef
-
Y. Sawano and T. Shimomura, Boundedness of the generalized fractional integral operators on generalized Morrey spaces over metric measure spaces, Z. Anal. Anwend. 36 (2017), 159–190.
MathSciNet
CrossRef
-
Y. Sawano, S. Sugano and H. Tanaka, Orlicz-Morrey spaces and fractional operators, Potential Anal. 36 (2012), 517–556.
MathSciNet
CrossRef
-
T. Shimomura and Y. Mizuta, Taylor expansion of Riesz potentials, Hiroshima Math. J. 25 (1995), 595–621.
MathSciNet
Link
-
A. Tachikawa, Boundary regularity of minimizers of double phase functionals, J. Math. Anal. Appl. 501 (2021), 123946, 34 pp.
MathSciNet
CrossRef
-
V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 675–710.
MathSciNet
Glasnik Matematicki Home Page