Glasnik Matematicki, Vol. 56, No. 2 (2021), 287-327. \( \)
APPROXIMATION OF NILPOTENT ORBITS FOR SIMPLE LIE GROUPS
Lucas Fresse and Salah Mehdi
Institut Elie Cartan de Lorraine, CNRS - UMR 7502, Université de Lorraine, France
e-mail:lucas.fresse@univ-lorraine.fr
e-mail:salah.mehdi@univ-lorraine.fr
Abstract.
We propose a systematic and topological study of limits
\(\lim_{\nu\to 0^+}G_\mathbb{R}\cdot(\nu x)\) of continuous families
of adjoint orbits for a non-compact simple real Lie group
\(G_\mathbb{R}\). This limit is always a finite union of nilpotent
orbits. We describe explicitly these nilpotent orbits in terms of
Richardson orbits in the case of hyperbolic semisimple elements. We
also show that one can approximate minimal nilpotent orbits or even
nilpotent orbits by elliptic semisimple orbits. The special cases of
\(\mathrm{SL}_n(\mathbb{R})\) and \(\mathrm{SU}(p,q)\) are computed in
detail.
2020 Mathematics Subject Classification. 17B08, 22E15
Key words and phrases. Lie groups, semisimple and nilpotent orbits,
approximation, asymptotic cones
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.56.2.06
References:
-
D. Barbasch and M. R. Sepanski, Closure ordering and the Kostant–Sekiguchi correspondence, Proc. Amer. Math. Soc. 126 (1998), 311–317.
MathSciNet
CrossRef
-
D. Barbasch and D. A. Vogan Jr, The local structure of characters, J. Functional Analysis 37 (1980), 27–55.
MathSciNet
CrossRef
-
D. Barbasch and D. A. Vogan Jr, Weyl group representations and nilpotent orbits, in: Representation theory of reductive groups (Park City, Utah, 1982), Birkhäuser Boston, Boston, 1983, 21–33.
MathSciNet
-
W. Borho and H. Kraft, Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen, Comment. Math. Helv. 54 (1979), 61–104.
MathSciNet
CrossRef
-
M. Božičević, A limit formula for even nilpotent orbits, Internat. J. Math. 19 (2008), 223–236.
MathSciNet
CrossRef
-
D. H. Collingwood and W.M. McGovern, Nilpotent orbits in semisimple Lie algebras, van Nostrand Reinhold Co., New York, 1993.
MathSciNet
-
D. Ž. Djoković, Closures of conjugacy classes in classical real linear Lie groups. II, Trans. Amer. Math. Soc. 270 (1982), 217–252.
MathSciNet
CrossRef
-
B. Harris, Tempered representations and nilpotent orbits, Represent. Theory 16 (2012), 610–619.
MathSciNet
CrossRef
-
B. Harris, H. He and G. Ólafsson, Wave front sets of reductive Lie group representations, Duke Math. J. 165 (2016), 793–846.
MathSciNet
CrossRef
-
B. Harris and Y. Oshima, Irreducible characters and semisimple coadjoint orbits, J. Lie Theory 30 (2020), 715–765.
MathSciNet
-
A. W. Knapp, Lie groups beyond an introduction, second ed., Birkhäuser Boston Inc., Boston, 2002.
MathSciNet
-
T. Kobayashi and B. Ørsted, Conformal geometry and branching laws for unitary representations attached to minimal nilpotent orbits, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 925–930.
MathSciNet
CrossRef
-
T. Kobayashi and B. Ørsted, Analysis on the minimal representation of \(O(p,q)\). I. Realization via conformal geometry, Adv. Math. 180 (2003), 486–512.
MathSciNet
CrossRef
-
K. Nishiyama, Asymptotic cone of semisimple orbits for symmetric pairs, Adv. Math. 226 (2011), 4338–4351.
MathSciNet
CrossRef
-
T. Ohta, The closures of nilpotent orbits in the classical symmetric pairs and their singularities, Tohoku Math. J. (2) 43 (1991), 161–211.
MathSciNet
CrossRef
-
T. Okuda, Smallest complex nilpotent orbits with real points, J. Lie Theory 25 (2015), 507–533.
MathSciNet
-
W. Rossmann, Limit characters of reductive Lie groups, Invent. Math. 61 (1980), 53–66.
MathSciNet
CrossRef
-
W. Rossmann, Limit orbits in reductive Lie algebras, Duke Math. J. 49 (1982), 215–229.
MathSciNet
Link
-
L. P. Rothschild, Orbits in a real reductive Lie algebra, Trans. Amer. Math. Soc. 168 (1972), 403–421.
MathSciNet
CrossRef
-
W. Schmid and K. Vilonen, Characteristic cycles and wave front cycles of representations of reductive Lie groups, Ann. of Math. (2) 151 (2000), 1071–1118.
MathSciNet
CrossRef
-
J.-M. Souriau, Structure des systèmes dynamiques, Dunod, Paris, 1970.
MathSciNet
-
P. E. Trapa, Annihilators and associated varieties of \(A_{{\mathfrak q}(\lambda)}\) modules for \(\mathrm{U}(p,q)\), Compositio Math. 129 (2001), 1–45.
MathSciNet
CrossRef
-
P. E. Trapa, Richardson orbits for real classical groups, J. Algebra 286 (2005), 361–385.
MathSciNet
CrossRef
-
D. A. Vogan Jr., Associated varieties and unipotent representations, in: Harmonic analysis on reductive groups (Brunswick, ME, 1989), Birkhäuser Boston, Boston, 1991, 315–388.
MathSciNet
-
D. A. Vogan Jr., The method of coadjoint orbits for real reductive groups, in: Representation theory of Lie groups (Park City, UT, 1998), Amer. Math. Soc., Providence, 2000, 179–238.
MathSciNet
CrossRef
Glasnik Matematicki Home Page