Glasnik Matematicki, Vol. 56, No. 2 (2021), 271-286. \( \)
DETERMINANTS OF SOME PENTADIAGONAL MATRICES
László Losonczi
Faculty of Economics, University of Debrecen, 4032 Debrecen, Böszörményi u.138, Hungary
e-mail:losonczi08@gmail.com
e-mail:losonczi.laszlo@econ.unideb.hu
Abstract.
In this paper we consider pentadiagonal \((n+1)\times(n+1)\) matrices with two subdiagonals and two superdiagonals at distances \(k\) and \(2k\) from the main diagonal where \(1\le k<2k\le n\). We give an explicit formula for their determinants and also consider the Toeplitz and “imperfect” Toeplitz versions of such matrices. Imperfectness means that the first and last \(k\) elements of the main diagonal differ from the elements in the middle. Using the rearrangement due to Egerváry and Szász we also show how these determinants can be factorized.
2020 Mathematics Subject Classification. 15A15, 15B09, 15B99
Key words and phrases. Determinants, Toeplitz matrix, pentadiagonal, tridiagonal matrices
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.56.2.05
References:
-
N. Bebiano and S. Furtado, A reducing approach for symmetrically sparse banded and anti-banded matrices, Linear Algebra Appl. 581 (2019), 36–50.
MathSciNet
CrossRef
-
U. Brimkulov, Matrices whose inverses are tridiagonal, band or block-tridiagonal and their relationship with the covariance matrices of a random Markov process, Filomat 33 (2019), 1335–1352.
MathSciNet
CrossRef
-
W. W. Chang and T.-L. Chen, Tridiagonal matrices with dominant diagonals and applications, Oper. Res. Lett. 44 (2016), no. 2, 231–233.
MathSciNet
CrossRef
-
E. Egerváry and O. Szász, Einige Extremalprobleme im Bereiche der trigonometrischen Polynome, Math. Z. 27 (1928), 641–652.
MathSciNet
CrossRef
-
M. El-Mikkawy and F. Atlan, A fast and reliable algorithm for evaluating \(n\)-th order \(k\)-tridiagonal determinants, Malays. J. Math. Sci. 9 (2015), 349–365.
MathSciNet
-
M. El-Mikkawy and T. Sogabe, A new family of \(k\)-Fibonacci numbers, Appl. Math. Comput. 215 (2010), 4456–4461.
MathSciNet
CrossRef
-
M. Elouafi, An explicit formula for the determinant of a skew-symmetric pentadiagonal Toeplitz matrix, Appl. Math. Comput. 218 (2011), 3466–3469.
MathSciNet
CrossRef
-
M. Elouafi, On formulae for the determinant of symmetric pentadiagonal Toeplitz matrices, Arab. J. Math. (Springer) 7 (2018), 91–99.
MathSciNet
CrossRef
-
C. M. da Fonseca and F. Yilmaz, Some comments on \(k\)-tridiagonal matrices: determinant, spectra, and inversion, Appl. Math. Comput. 270 (2015), 644–647.
MathSciNet
CrossRef
-
C. M. da Fonseca and V. Kowalenko, Eigenpairs of a family of tridiagonal matrices: three decades later, Acta Math. Hungar. 160 (2020), 376–389.
MathSciNet
CrossRef
-
C. M. da Fonseca and V. Kowalenko, L. Losonczi, Ninety years of \(k\)-tridiagonal matrices, Studia Sci. Math. Hungar. 57 (2020), 298–311.
MathSciNet
CrossRef
-
C. M. da Fonseca and L. Losonczi, On the determinant of general pentadiagonal matrices, Publ. Math. Debrecen 97 (2020), 507–523.
MathSciNet
CrossRef
-
C. M. da Fonseca and L. Losonczi, On some pentadiagonal matrices: their determinants and inverses, Ann. Univ. Sci. Budapest. Sect. Comput. 51 (2020), 39–50.
MathSciNet
-
A. Frommer, C. Schimmel and M. Schweitzer, Non-Toeplitz decay bounds for inverses of Hermitian positive definite tridiagonal matrices, Electron. Trans. Numer. Anal. 48 (2018), 362–372.
MathSciNet
CrossRef
-
A.D.A. Hadj and M. Elouafi, On the characteristic polynomial, eigenvectors and determinant of a pentadiagonal matrix, Appl. Math. Comput. 198 (2008), 634–642.
MathSciNet
CrossRef
-
A. D. A. Hadj and M. Elouafi, A fast numerical algorithm for the inverse of a tridiagonal and pentadiagonal matrix, Appl. Math. Comput. 202 (2008), 441–445.
MathSciNet
CrossRef
-
J. Jia, B. Yang and S. Li, On a homogeneous recurrence relation for the determinants of general pentadiagonal Toeplitz matrices, Comput. Math. Appl. 71 (2016), 1036–1044.
MathSciNet
CrossRef
-
L. Losonczi, Eigenvalues and eigenvectors of some tridiagonal matrices, Acta Math. Hungar. 60 (1992), 309–322.
MathSciNet
CrossRef
-
Y. Lin and X. Lin, A novel algorithm for inverting a \(k\)-pentadiagonal matrix, in: Proceedings of the 2016 3rd International Conference on Systems and Informatics (ICSAI 2016), 578–582.
-
R. B. Marr and G. H. Vineyard, Five-diagonal Toeplitz determinants and their relation to Chebyshev polynomials, SIAM J. Matrix Anal. Appl. 9 (1988), 579–586.
MathSciNet
CrossRef
-
T. McMillen, On the eigenvalues of double band matrices, Linear Algebra Appl. 431 (2009), 1890–1897.
MathSciNet
CrossRef
-
A. Ohashi, T. Sogabe and R. S. Usuda, On decomposition of \(k\)-tridiagonal \(\ell\)-Toeplitz matrices and its applications, Spec. Matrices 3 (2015), 200–206.
MathSciNet
CrossRef
-
L. Perotti and M. Wojtylak, Matrix methods for Padé approximation: numerical calculation of poles, zeros and residues, Linear Algebra Appl. 548 (2018), 95–122.
MathSciNet
CrossRef
-
R. A. Sweet, A recursive relation for the determinant of a pentadiagonal matrix, Comm. ACM. 12 (1969), 330–332.
MathSciNet
CrossRef
-
S. Takahira, T. Sogabe and T. S. Usuda, Bidiagonalization of \((k,k\!+\!1)\)-tridiagonal matrices, Spec. Matrices 7 (2019), 20–26.
MathSciNet
CrossRef
-
L. S. L. Tan, Explicit inverse of tridiagonal matrix with applications in autoregressive modelling, IMA J. Appl. Math. 84 (2019), 679–695.
MathSciNet
CrossRef
-
C. Wang, H. Li and D. Zhao, An explicit formula for the inverse of a pentadiagonal Toeplitz matrix, J. Comput. Appl. Math. 278 (2015), 12–18.
MathSciNet
CrossRef
Glasnik Matematicki Home Page