Glasnik Matematicki, Vol. 56, No. 2 (2021), 271-286. \( \)

DETERMINANTS OF SOME PENTADIAGONAL MATRICES

László Losonczi

Faculty of Economics, University of Debrecen, 4032 Debrecen, Böszörményi u.138, Hungary
e-mail:losonczi08@gmail.com
e-mail:losonczi.laszlo@econ.unideb.hu


Abstract.   In this paper we consider pentadiagonal \((n+1)\times(n+1)\) matrices with two subdiagonals and two superdiagonals at distances \(k\) and \(2k\) from the main diagonal where \(1\le k<2k\le n\). We give an explicit formula for their determinants and also consider the Toeplitz and “imperfect” Toeplitz versions of such matrices. Imperfectness means that the first and last \(k\) elements of the main diagonal differ from the elements in the middle. Using the rearrangement due to Egerváry and Szász we also show how these determinants can be factorized.

2020 Mathematics Subject Classification.   15A15, 15B09, 15B99

Key words and phrases.   Determinants, Toeplitz matrix, pentadiagonal, tridiagonal matrices


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.56.2.05


References:

  1. N. Bebiano and S. Furtado, A reducing approach for symmetrically sparse banded and anti-banded matrices, Linear Algebra Appl. 581 (2019), 36–50.
    MathSciNet    CrossRef

  2. U. Brimkulov, Matrices whose inverses are tridiagonal, band or block-tridiagonal and their relationship with the covariance matrices of a random Markov process, Filomat 33 (2019), 1335–1352.
    MathSciNet    CrossRef

  3. W. W. Chang and T.-L. Chen, Tridiagonal matrices with dominant diagonals and applications, Oper. Res. Lett. 44 (2016), no. 2, 231–233.
    MathSciNet    CrossRef

  4. E. Egerváry and O. Szász, Einige Extremalprobleme im Bereiche der tri­go­no­met­rischen Polynome, Math. Z. 27 (1928), 641–652.
    MathSciNet    CrossRef

  5. M. El-Mikkawy and F. Atlan, A fast and reliable algorithm for evaluating \(n\)-th order \(k\)-tridiagonal determinants, Malays. J. Math. Sci. 9 (2015), 349–365.
    MathSciNet

  6. M. El-Mikkawy and T. Sogabe, A new family of \(k\)-Fibonacci numbers, Appl. Math. Comput. 215 (2010), 4456–4461.
    MathSciNet    CrossRef

  7. M. Elouafi, An explicit formula for the determinant of a skew-symmetric pentadiagonal Toeplitz matrix, Appl. Math. Comput. 218 (2011), 3466–3469.
    MathSciNet    CrossRef

  8. M. Elouafi, On formulae for the determinant of symmetric pentadiagonal Toeplitz matrices, Arab. J. Math. (Springer) 7 (2018), 91–99.
    MathSciNet    CrossRef

  9. C. M. da Fonseca and F. Yilmaz, Some comments on \(k\)-tridiagonal matrices: determinant, spectra, and inversion, Appl. Math. Comput. 270 (2015), 644–647.
    MathSciNet    CrossRef

  10. C. M. da Fonseca and V. Kowalenko, Eigenpairs of a family of tridiagonal matrices: three decades later, Acta Math. Hungar. 160 (2020), 376–389.
    MathSciNet    CrossRef

  11. C. M. da Fonseca and V. Kowalenko, L. Losonczi, Ninety years of \(k\)-tridiagonal matrices, Studia Sci. Math. Hungar. 57 (2020), 298–311.
    MathSciNet    CrossRef

  12. C. M. da Fonseca and L. Losonczi, On the determinant of general pentadiagonal matrices, Publ. Math. Debrecen 97 (2020), 507–523.
    MathSciNet    CrossRef

  13. C. M. da Fonseca and L. Losonczi, On some pentadiagonal matrices: their determinants and inverses, Ann. Univ. Sci. Budapest. Sect. Comput. 51 (2020), 39–50.
    MathSciNet

  14. A. Frommer, C. Schimmel and M. Schweitzer, Non-Toeplitz decay bounds for inverses of Hermitian positive definite tridiagonal matrices, Electron. Trans. Numer. Anal. 48 (2018), 362–372.
    MathSciNet    CrossRef

  15. A.D.A. Hadj and M. Elouafi, On the characteristic polynomial, eigenvectors and determinant of a pentadiagonal matrix, Appl. Math. Comput. 198 (2008), 634–642.
    MathSciNet    CrossRef

  16. A. D. A. Hadj and M. Elouafi, A fast numerical algorithm for the inverse of a tridiagonal and pentadiagonal matrix, Appl. Math. Comput. 202 (2008), 441–445.
    MathSciNet    CrossRef

  17. J. Jia, B. Yang and S. Li, On a homogeneous recurrence relation for the determinants of general pentadiagonal Toeplitz matrices, Comput. Math. Appl. 71 (2016), 1036–1044.
    MathSciNet    CrossRef

  18. L. Losonczi, Eigenvalues and eigenvectors of some tridiagonal matrices, Acta Math. Hungar. 60 (1992), 309–322.
    MathSciNet    CrossRef

  19. Y. Lin and X. Lin, A novel algorithm for inverting a \(k\)-pentadiagonal matrix, in: Proceedings of the 2016 3rd International Conference on Systems and Informatics (ICSAI 2016), 578–582.

  20. R. B. Marr and G. H. Vineyard, Five-diagonal Toeplitz determinants and their relation to Chebyshev polynomials, SIAM J. Matrix Anal. Appl. 9 (1988), 579–586.
    MathSciNet    CrossRef

  21. T. McMillen, On the eigenvalues of double band matrices, Linear Algebra Appl. 431 (2009), 1890–1897.
    MathSciNet    CrossRef

  22. A. Ohashi, T. Sogabe and R. S. Usuda, On decomposition of \(k\)-tridiagonal \(\ell\)-Toeplitz matrices and its applications, Spec. Matrices 3 (2015), 200–206.
    MathSciNet    CrossRef

  23. L. Perotti and M. Wojtylak, Matrix methods for Padé approximation: numerical calculation of poles, zeros and residues, Linear Algebra Appl. 548 (2018), 95–122.
    MathSciNet    CrossRef

  24. R. A. Sweet, A recursive relation for the determinant of a pentadiagonal matrix, Comm. ACM. 12 (1969), 330–332.
    MathSciNet    CrossRef

  25. S. Takahira, T. Sogabe and T. S. Usuda, Bidiagonalization of \((k,k\!+\!1)\)-tridiagonal matrices, Spec. Matrices 7 (2019), 20–26.
    MathSciNet    CrossRef

  26. L. S. L. Tan, Explicit inverse of tridiagonal matrix with applications in auto­reg­res­sive modelling, IMA J. Appl. Math. 84 (2019), 679–695.
    MathSciNet    CrossRef

  27. C. Wang, H. Li and D. Zhao, An explicit formula for the inverse of a penta­dia­go­nal Toeplitz matrix, J. Comput. Appl. Math. 278 (2015), 12–18.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page