Glasnik Matematicki, Vol. 56, No. 2 (2021), 263-270. \( \)

ON THE RAMANUJAN-NAGELL TYPE DIOPHANTINE EQUATION \(Dx^2+k^n=B\)

Zhongfeng Zhang and Alain Togbé

School of Mathematics and Statistics, Zhaoqing University, Zhaoqing 526061, China
e-mail:bee2357@163.com

Department of Mathematics and Statistics, Purdue University Northwest, 1401 S. U.S. 421 Westville, IN 46391, USA
e-mail:atogbe@pnw.edu


Abstract.   In this paper, we prove that the Ramanujan-Nagell type Diophantine equation \(Dx^2+k^n=B\) has at most three nonnegative integer solutions \((x, n)\) for \(k\) a prime and \(B, D\) positive integers.

2020 Mathematics Subject Classification.   11D41, 11D61

Key words and phrases.   Diophantine equation, Pell equations.


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.56.2.04


References:

  1. M. Bai and Z. Zhang, On the Ramanujan-Nagell type equation \(x^2+2^n=B\), Journal of Southwest China Normal University (Natural Science Edition) 42 (2017), 5–7.
    CrossRef

  2. J. Luo and P. Yuan, On the Diophantine equation \(\frac{ax^{n+2l}+c}{ abt^2x^n +c }= by^2\), Acta Math. Hungar. 133 (2011), 242–258.
    MathSciNet    CrossRef

  3. M. Ulas, Some experiments with Ramanujan-Nagell type Diophantine equations, Glas. Mat. Ser. III 49(69) (2014), 287–302.
    MathSciNet    CrossRef

  4. D. Walker, On the Diophantine equation \(mX^2-nY^2 =\pm 1\), Amer. Math. Monthly, 74 (1967), 504-513.
    MathSciNet    CrossRef

  5. Z. Zhang and A. Togbé, On two Diophantine equations of Ramanujan-Nagell type, Glas. Mat. Ser. III 51(71) (2016), 17–22.
    MathSciNet    CrossRef

  6. Z. Zhang and A. Togbé, On the Ramanujan-Nagell type Diophantine equation \(x^2+Ak^n=B\), Glas. Mat. Ser. III 53(73) (2018), 43–50.
    MathSciNet    CrossRef

  7. Z. Zhang and A. Togbé, On the Ramanujan-Nagell type Diophantine equation \(x^2+Ak^n=B,\) II, Glas. Mat. Ser. III 53(73) (2018), 221–228.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page