Glasnik Matematicki, Vol. 56, No. 2 (2021), 241-261. \( \)

A REMARK ON FLAT TERNARY CYCLOTOMIC POLYNOMIALS

Bin Zhang

School of Mathematical Sciences, Qufu Normal University, 273165 Qufu, P. R. China
e-mail:zhangbin100902025@163.com


Abstract.   Let \(\Phi_n(x)\) be the \(n\)-th cyclotomic polynomial. In this paper, for odd primes \(p\lt q \lt r\) with \(q\equiv \pm1\pmod p\) and \(8r\equiv \pm1\pmod {pq}\), we prove that the coefficients of \(\Phi_{pqr}(x)\) do not exceed \(1\) in modulus if and only if (i) \(p=3\), \(q\geq 19\) and \(q\equiv 1\pmod 3\) or (ii) \(p=7\), \(q\geq83\) and \(q\equiv -1\pmod 7\).

2020 Mathematics Subject Classification.   11B83, 11C08, 11N56

Key words and phrases.   Flat cyclotomic polynomial, ternary cyclotomic polynomial, coefficients of cyclotomic polynomial


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.56.2.03


References:

  1. A. Arnold and M. Monagan, Data on the height and lengths of cyclotomic polynomials.
    Link

  2. G. Bachman, Flat cyclotomic polynomials of order three, Bull. London Math. Soc. 38 (2006), 53–60.
    MathSciNet    CrossRef

  3. G. Bachman and P. Moree, On a class of inclusion-exclusion polynomials, Integers 11 (2011), A8.
    MathSciNet    CrossRef

  4. M. Beiter, Coefficients of the cyclotomic polynomial \(F_{3qr}(x)\), Fibonacci Quart. 16 (1978), 302–306.
    MathSciNet

  5. L. Carlitz, The number of terms in the cyclotomic polynomial \(F_{pq}(x)\), Amer. Math. Monthly 73 (1966), 979–981.
    MathSciNet    CrossRef

  6. S. Elder, Flat cyclotomic polynomials: a new approach, arXiv:1207.5811v1 (2012).

  7. G. B. Imhoff, On the coefficients of cyclotomic polynomials, MS Thesis, California State University, 2013.

  8. C. G. Ji, A specific family of cyclotomic polynomials of order three, Sci. China Math. 53 (2010), 2269–2274.
    MathSciNet    CrossRef

  9. N. Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory 127 (2007), 118–126.
    MathSciNet    CrossRef

  10. T. Y. Lam and K. H. Leung, On the cyclotomic polynomial \(\Phi_{pq}(X)\), Amer. Math. Monthly 103 (1996), 562–564.
    MathSciNet    CrossRef

  11. H. W. Lenstra, Vanishing sums of roots of unity, in: Proceedings, Bicentennial Congress, Wiskundig Genootschap, Part II, Math. Centrum, Amsterdam, 1979, 249–268.
    MathSciNet

  12. A. Migotti, Zur Theorie der Kreisteilungsgleichung, Sitzber. Math.-Naturwiss. Classe der Kaiser. Akad. der Wiss. (1883), 7–14.

  13. R. Thangadurai, On the coefficients of cyclotomic polynomials, in: Cyclotomic fields and related topics, Bhaskaracharya Pratishthana, Pune, 2000, 311–322.
    MathSciNet

  14. B. Zhang and Y. Zhou, On a class of ternary cyclotomic polynomials, Bull. Korean Math. Soc. 52 (2015), 1911–1924.
    MathSciNet    CrossRef

  15. B. Zhang, Remarks on the flatness of ternary cyclotomic polynomials, Int. J. Number Theory 13 (2017), 529–547.
    MathSciNet    CrossRef

  16. B. Zhang, The flatness of a class of ternary cyclotomic polynomials, Publ. Math. Debrecen 97 (2020), 201–216.
    MathSciNet    CrossRef

  17. B. Zhang, The flatness of ternary cyclotomic polynomials, Rend. Sem. Mat. Univ. Padova 145 (2021), 1–42.
    MathSciNet    CrossRef

  18. J. Zhao and X. K. Zhang, Coefficients of ternary cyclotomic polynomials, J. Number Theory 130 (2010), 2223–2237.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page