Glasnik Matematicki, Vol. 56, No. 2 (2021), 241-261. \( \)
A REMARK ON FLAT TERNARY CYCLOTOMIC POLYNOMIALS
Bin Zhang
School of Mathematical Sciences, Qufu Normal University, 273165 Qufu, P. R. China
e-mail:zhangbin100902025@163.com
Abstract.
Let \(\Phi_n(x)\) be the \(n\)-th cyclotomic
polynomial. In this paper, for odd primes \(p\lt q \lt r\)
with \(q\equiv \pm1\pmod p\) and \(8r\equiv \pm1\pmod {pq}\), we
prove that the coefficients of \(\Phi_{pqr}(x)\) do not exceed \(1\) in modulus if and only if
(i) \(p=3\), \(q\geq 19\) and \(q\equiv 1\pmod 3\) or
(ii) \(p=7\), \(q\geq83\) and \(q\equiv -1\pmod 7\).
2020 Mathematics Subject Classification. 11B83, 11C08, 11N56
Key words and phrases. Flat cyclotomic polynomial, ternary cyclotomic polynomial, coefficients of cyclotomic polynomial
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.56.2.03
References:
-
A. Arnold and M. Monagan, Data on the height and lengths of cyclotomic polynomials.
Link -
G. Bachman, Flat cyclotomic polynomials of order three, Bull. London Math. Soc. 38 (2006), 53–60.
MathSciNet
CrossRef
-
G. Bachman and P. Moree, On a class of inclusion-exclusion polynomials, Integers 11 (2011), A8.
MathSciNet
CrossRef
-
M. Beiter, Coefficients of the cyclotomic polynomial \(F_{3qr}(x)\), Fibonacci Quart. 16 (1978), 302–306.
MathSciNet
-
L. Carlitz, The number of terms in the cyclotomic polynomial \(F_{pq}(x)\), Amer. Math. Monthly 73 (1966), 979–981.
MathSciNet
CrossRef
-
S. Elder, Flat cyclotomic polynomials: a new approach, arXiv:1207.5811v1 (2012).
-
G. B. Imhoff, On the coefficients of cyclotomic polynomials, MS Thesis, California State University, 2013.
-
C. G. Ji, A specific family of cyclotomic polynomials of order three, Sci. China Math. 53 (2010), 2269–2274.
MathSciNet
CrossRef
-
N. Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory 127 (2007), 118–126.
MathSciNet
CrossRef
-
T. Y. Lam and K. H. Leung, On the cyclotomic polynomial \(\Phi_{pq}(X)\), Amer. Math. Monthly 103 (1996), 562–564.
MathSciNet
CrossRef
-
H. W. Lenstra, Vanishing sums of roots of unity, in: Proceedings, Bicentennial Congress, Wiskundig Genootschap, Part II, Math. Centrum, Amsterdam, 1979, 249–268.
MathSciNet
-
A. Migotti, Zur Theorie der Kreisteilungsgleichung, Sitzber. Math.-Naturwiss. Classe der Kaiser. Akad. der Wiss. (1883), 7–14.
-
R. Thangadurai, On the coefficients of cyclotomic polynomials, in: Cyclotomic fields and related topics, Bhaskaracharya Pratishthana, Pune, 2000, 311–322.
MathSciNet
-
B. Zhang and Y. Zhou, On a class of ternary cyclotomic polynomials, Bull. Korean Math. Soc. 52 (2015), 1911–1924.
MathSciNet
CrossRef
-
B. Zhang, Remarks on the flatness of ternary cyclotomic polynomials, Int. J. Number Theory 13 (2017), 529–547.
MathSciNet
CrossRef
-
B. Zhang, The flatness of a class of ternary cyclotomic polynomials, Publ. Math. Debrecen 97 (2020), 201–216.
MathSciNet
CrossRef
-
B. Zhang, The flatness of ternary cyclotomic polynomials, Rend. Sem. Mat. Univ. Padova 145 (2021), 1–42.
MathSciNet
CrossRef
-
J. Zhao and X. K. Zhang, Coefficients of ternary cyclotomic polynomials, J. Number Theory 130 (2010), 2223–2237.
MathSciNet
CrossRef
Glasnik Matematicki Home Page