Glasnik Matematicki, Vol. 56, No. 2 (2021), 225-240. \( \)
GROUPS
\(S_{n}\times S_{m}\) IN CONSTRUCTION OF FLAG-TRANSITIVE BLOCK DESIGNS
Snježana Braić, Joško Mandić, Aljoša Šubašić, Tanja Vojković and Tanja Vučičić
Faculty of science, University of Split, 21 000 Split, Croatia
e-mail:sbraic@pmfst.hr
e-mail:majo@pmfst.hr
e-mail:aljsub@pmfst.hr
e-mail:tanja@pmfst.hr
e-mail:vucicic@pmfst.hr
Abstract.
In this paper, we observe the possibility that the group \(S_{n}\times S_{m}\) acts
as a flag-transitive automorphism group of a block design with point set \(\{1,\ldots ,n\}\times \{1,\ldots ,m\},4\leq n\leq m\leq 70\). We prove the
equivalence of that problem to the existence of an appropriately defined
smaller flag-transitive incidence structure. By developing and applying
several algorithms for the construction of the latter structure, we manage
to solve the existence problem for the desired designs with \(nm\) points in
the given range. In the vast majority of the cases with confirmed existence,
we obtain all possible structures up to isomorphism.
2020 Mathematics Subject Classification. 05B05, 20B25
Key words and phrases. Combinatorial designs, incidence structures, automorphism groups
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.56.2.02
References:
-
W. Bosma, J. J. Cannon, C. Fieker, A. Steel (eds.), Handbook of Magma functions, Edition 2.16, 2010.
-
S. Braić, J. Mandić and T. Vučičić, Flag-transitive block designs with automorphism group \(S_{n} wr S_{2}\), Discrete Math. 341 (2018), 2220–2230.
MathSciNet
CrossRef
-
P. J. Cameron, Permutation groups, Cambridge University Press, Cambridge, 1999.
MathSciNet
CrossRef
-
P. J. Cameron and C. E. Praeger, Block-transitive t-designs I: point-imprimitive designs, Discrete Math. 118 (1993), 33–43.
MathSciNet
CrossRef
-
A. R. Camina and P.-H. Zieschang, On the normal structure of flag transitive automorphism groups of 2-designs, J. London Math. Soc. (2) 41 (1990), 555–564.
MathSciNet
CrossRef
-
J. D. Dixon and B. Mortimer, Permutation groups, Springer, New York, 1996.
MathSciNet
CrossRef
-
https://mapmf.pmfst.unist.hr/~sbraic/FTIS for Sn x Sm
-
M. W. Liebeck, C. E. Praeger and J. Saxl, A classification of the maximal subgroups of the finite alternating and symmetric groups, J. Algebra 111 (1987), 365–383.
MathSciNet
CrossRef
-
J. J. Rotman, An introduction to the theory of groups, Springer-Verlag, New York 1995.
MathSciNet
CrossRef
-
P.-H. Zieschang, Point regular normal subgroups of flag transitive automorphism groups of 2-designs, Adv. Math. 121 (1996), 102–123.
MathSciNet
CrossRef
Glasnik Matematicki Home Page