Glasnik Matematicki, Vol. 56, No. 2 (2021), 195-223. \( \)

LIMIT THEOREMS FOR NUMBERS SATISFYING A CLASS OF TRIANGULAR ARRAYS

Igoris Belovas

Institute of Data Science and Digital Technologies, Vilnius University, 04812 Vilnius, Lithuania
e-mail:Igoris.Belovas@mif.vu.lt


Abstract.   The paper extends the investigations of limit theorems for numbers satisfying a class of triangular arrays, defined by a bivariate linear recurrence with bivariate linear coefficients. We obtain the partial differential equation and special analytical expressions for the numbers using a semi-exponential generating function. We apply the results to prove the asymptotic normality of special classes of the numbers and specify the convergence rate to the limiting distribution. We demonstrate that the limiting distribution is not always Gaussian.

2020 Mathematics Subject Classification.   05A15, 05A16, 39A06, 39A14, 60F05

Key words and phrases.   Limit theorems, combinatorial numbers, partial difference equations, asymptotic enumeration, asymptotic normality


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.56.2.01


References:

  1. S. C. Bagui and K. L. Mehra, Convergence of binomial, poisson, negative-binomial, and gamma to normal distribution: moment generating functions technique, Am. J. Math. Stat. 6(3) (2016), 115–121.
    CrossRef

  2. I. Belovas, A central limit theorem for coefficients of the modified Borwein method for the calculation of the Riemann zeta-function, Lith. Math. J. 59 (2019), 17–23.
    MathSciNet    CrossRef

  3. I. Belovas, A local limit theorem for coefficients of modified Borwein's method, Glas. Mat. Ser. III 54(74) (2019), 1–9.
    MathSciNet

  4. I. Belovas, Central and local limit theorems for numbers of the tribonacci triangle, Mathematics 9(8) (2021), 1–11.
    CrossRef

  5. I. Belovas, The asymptotics of the geometric polynomials, (2021), submitted.

  6. I. Belovas, Series with binomial-like coefficients for the Riemann zeta function, to appear in Ann. Mat. Pura Appl.
    CrossRef

  7. I. Belovas and M. Sabaliauskas, Series with binomial-like coefficients for evaluation and 3D visualization of zeta functions, Informatica (Vilnius) 31 (2020), 659–680.
    MathSciNet    CrossRef

  8. I. Belovas and L. Sakalauskas, Limit theorems for the coefficients of the modified Borwein method for the calculation of the Riemann zeta-function values, Colloq. Math. 151 (2018), 217–227.
    MathSciNet    CrossRef

  9. K. N. Boyadzhiev, A series transformation formula and related polynomials, Int. J. Math. Math. Sci. 2005 (2005), 3849–3866.
    MathSciNet    CrossRef

  10. K. N. Boyadzhiev and A. Dil, Geometric polynomials: properties and applications to series with zeta values, Anal. Math. 42 (2016), 203–224.
    MathSciNet    CrossRef

  11. E. R. Canfield, Central and local limit theorems for the coefficients of polynomials of binomial type, J. Combinatorial Theory Ser. A 23 (1977), 275–290.
    MathSciNet    CrossRef

  12. C.-O. Chow and T. Mansour, On the real-rootedness of generalized Touchard polynomials, Appl. Math. Comput. 254 (2015), 204–209.
    MathSciNet    CrossRef

  13. R. Courant and D. Hilbert, Methods of mathematical physics. Vol. II: Partial differential equations., Wiley-Interscience, New York-London, 1962.
    MathSciNet

  14. G. Dattoli, B. Germano, M. R. Martinelli and P. E. Ricci, Touchard like polynomials and generalized Stirling numbers, Appl. Math. Comput. 218 (2012), 6661–6665.
    MathSciNet    CrossRef

  15. G. Frobenius, Über die Bernoullischen Zahlen und die Eulerschen Polynome, Reichsdr., Berlin, 1910.

  16. P. Golokvosčius, Linear and quasilinear first-order partial differential equations, Vilnius university publishing house, 1996. (in Lithuanian)

  17. L. N. Harper, Stirling behaviour is asymptotically normal, Ann. Math. Statist., 38, (1967), 410–414.
    CrossRef

  18. H.-K. Hwang, Large deviations of combinatorial distributions. II. Local limit theorems, Ann. Appl. Probab. 8 (1998), 163–181.
    MathSciNet    CrossRef

  19. H.-K. Hwang, On convergence rates in the central limit theorems for combinatorial structures, European J. Combin. 19 (1998), 329–343.
    MathSciNet    CrossRef

  20. F. John, Partial differential equations (4th ed.), Springer, 1991

  21. A. Kyriakoussis, A central limit theorem for numbers satisfying a class of triangular arrays, Discrete Math. 51 (1984), 41–46.
    MathSciNet    CrossRef

  22. A. Kyriakoussis and M. G. Vamvakari, Asymptotic normality of the coefficients of polynomials related to the classical system orthogonal ones, Discrete Math. 205 (1999), 145–169.
    MathSciNet    CrossRef

  23. A. Kyriakoussis and M. G. Vamvakari, Asymptotic normality of the coefficients of polynomials associated with the Gegenbauer ones, J. Comput. Appl. Math. 133 (2001), 455–463.
    MathSciNet    CrossRef

  24. A. Kyriakoussis and M. G. Vamvakari, Central and local limit theorems for the coefficients of polynomials associated with the Laguerre ones, J. Statist. Plann. Inference 101 (2002), 191–202.
    MathSciNet    CrossRef

  25. A. Kyriakoussis and M. G. Vamvakari, A unified treatment for the asymptotic normality of the coefficients of polynomials related to orthogonal ones, J. Statist. Plann. Inference 135 (2005), 148–157.
    MathSciNet    CrossRef

  26. M. Maltenfort, New definitions of the generalized Stirling numbers, Aequationes Math. 94 (2020), 169–200.
    MathSciNet    CrossRef

  27. T. Mansour and M. Schork, The generalized Touchard polynomials revisited, Appl. Math. Comput. 219 (2013), 9978–9991.
    MathSciNet    CrossRef

  28. A. Mukherjea, M. Rao and S. Suen, A note on moment generating functions, Statist. Probab. Lett. 76 (2006), 1185–1189.
    MathSciNet    CrossRef

  29. G. Nyul and G. Rácz, The \(r\)-Lah numbers, Discrete Math. 338 (2015), 1660–1666.
    MathSciNet    CrossRef

  30. R. B. Paris, The asymptotics of the Touchard polynomials, Mathematica Aeterna, 6(5), (2016), 765–779.

  31. N. G. Ushakov and V. G. Ushakov, On convergence of moment generating functions, Statist. Probab. Lett. 81 (2011), 502–505.
    MathSciNet    CrossRef

  32. H.-R. Yan, Q.-L. Zhang and A.-M. Xu, Some inequalities for generalized Bell-Touchard polynomials, J. Math. Inequal. 13 (2019), 645–653.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page