Glasnik Matematicki, Vol. 56, No. 1 (2021), 175-194.

AMIABLE AND ALMOST AMIABLE FIXED SETS. EXTENSION OF THE BROUWER FIXED POINT THEOREM

James F. Peters

Computational Intelligence Laboratory, University of Manitoba, WPG, MB, R3T 5V6, Canada,
and
Department of Mathematics, Faculty of Arts and Sciences, Adıyaman University, 02040 Adıyaman, Turkey
e-mail: james.peters3@umanitoba.ca


Abstract.   This paper introduces shape boundary regions in descriptive proximity forms of CW (Closure-finite Weak) spaces as a source of amiable fixed subsets as well as almost amiable fixed subsets of descriptive proximally continuous (dpc) maps. A dpc map is an extension of an Efremovič-Smirnov proximally continuous (pc) map introduced during the early-1950s by V.A. Efremovič and Yu.M. Smirnov. Amiable fixed sets and the Betti numbers of their free Abelian group representations are derived from dpc's relative to the description of the boundary region of the sets. Almost amiable fixed sets are derived from dpc's by relaxing the matching description requirement for the descriptive closeness of the sets. This relaxed form of amiable fixed sets works well for applications in which closeness of fixed sets is approximate rather than exact. A number of examples of amiable fixed sets are given in terms of wide ribbons. A bi-product of this work is a variation of the Jordan curve theorem and a fixed cell complex theorem, which is an extension of the Brouwer fixed point theorem.

2010 Mathematics Subject Classification.   54E05, 55R40, 68U05, 55M20

Key words and phrases.   Amiable, boundary region, CW space, descriptive fixed set, descriptive proximally continuous map, descriptive proximity, wide ribbon


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.56.1.11


References:

  1. P. Alexandroff, Elementary concepts of topology, Dover Publications, Inc., New York, 1965, 63 pp., translation of Einfachste Grundbegriffe der Topologie [Springer, Berlin, 1932], translated by Alan E. Farley , Preface by D. Hilbert.
    MathSciNet    

  2. P. Alexandroff and H. Hopf, Topologie. Band I, Springer, Berlin, 1935, reprinted Chelsea Publishing Co., Bronx, 1972.
    MathSciNet    

  3. M. Balko, A. Pór, M. Scheucher, K. Swanepoel and P. Valtr, Almost equidistant sets, Graphs Combin. 36 (2020), 729-754.
    MathSciNet     CrossRef

  4. S.C. Brooks, The geometry and topology of wide ribbons, Ph.D. thesis, The University of Iowa, 2013.
    MathSciNet     CrossRef

  5. L.E.J. Brouwer, Über abbildung von mannigfaltigkeiten, Math. Ann. 71 (1911), 97-115.
    MathSciNet     CrossRef

  6. E. Čech, Topological spaces, John Wiley & Sons Ltd., London, 1966.
    MathSciNet    

  7. A. Di Concilio, C. Guadagni, J.F. Peters and S. Ramanna, Descriptive proximities. properties and interplay between classical proximities and overlap, Math. Comput. Sci. 12 (2018), 91-106.
    MathSciNet     CrossRef

  8. V.A. Efremovič, The geometry of proximity I (in Russian), Mat. Sbornik N. S. 31(73) (1952), 189-200.
    MathSciNet    

  9. P. Giblin, Graphs, surfaces and homology, Cambridge University Press, Cambridge, 2010.
    MathSciNet     CrossRef

  10. C. Jordan, Cours d'analyse de l'École polytechnique, tome i-iii, Éditions Jacques Gabay, Sceaux, 1991, reprint of 1915 edition, Tome I, II, III.
    MathSciNet    
    MathSciNet    
    MathSciNet    

  11. R. Maehara, The Jordan curve theorem via the Brouwer fixed point theorem, Amer. Math. Monthly 91 (1984), 641-643.
    MathSciNet     CrossRef

  12. J.R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, 1984.
    MathSciNet    

  13. J.R. Munkres, Topology: a first course, Prentice Hall, Inc., Upper Saddle River, 2000.
    MathSciNet    

  14. S.A. Naimpally and J.F. Peters, Topology with applications. Topological spaces via near and far, World Scientific, Singapore, 2013.
    MathSciNet     CrossRef

  15. S.A. Naimpally and B.D. Warrack, Proximity spaces, Cambridge University Press, London-New York, 1970.
    MathSciNet    

  16. J.F. Peters, Topology of digital images. Visual pattern discovery in proximity spaces, Springer-Verlag Berlin Heidelberg, 2014.

  17. J.F. Peters, Vortex nerves and their proximities. Nerve Betti numbers and descriptive proximity, Bull. Allahabad Math. Soc. 34 (2019), 263-276.

  18. J.F. Peters, Computational geometry, topology and physics of digital images with applications, Springer, Cham, 2020.
    MathSciNet     CrossRef

  19. J.F. Peters, Ribbon complexes & their approximate descriptive proximities. Ribbon & vortex nerves, Betti numbers and planar divisions, Bull. Allahabad Math. Soc. 35 (2020), 1-13.

  20. J.F. Peters and T. Vergili, Descriptive fixed set properties for ribbon complexes, manuscript, arXiv:2007.04394.

  21. Ju. M. Smirnov, On proximity spaces in the sense of V.A. Efremovič, Mat. Sbornik N.S. 84 (1952), 895-898, English translation: Amer. Math. Soc. Trans. Ser. 2, 38, 1964, 1-4.

  22. Yu. M. Smirnov, On proximity spaces, Mat. Sbornik N.S. 31 (1952), 543-574.
    MathSciNet    

  23. E.H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont., 1966.
    MathSciNet    

  24. R.M. Switzer, Algebraic topology-homology and homotopy, Springer, Berlin, 2002.
    MathSciNet    

  25. O. Veblen, Theory on plane curves in non-metrical analysis situs, Trans. Amer. Math. Soc. 6 (1905), 83-98.
    MathSciNet     CrossRef

  26. J.W. Vick, Homology theory. An introduction to algebraic topology, Springer-Verlag, New York, 1994.
    MathSciNet     CrossRef

  27. F. Vigolo, The geometry and topology of wide ribbons, Ph.D. thesis, Balliol College, University of Oxford, 2018.

  28. J.H.C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc. (2) 45 (1939), 243-327.
    MathSciNet     CrossRef

  29. J.H.C. Whitehead, Combinatorial homotopy. I, Bull. Amer. Math. Soc. 55 (1949), 213-245.
    MathSciNet     CrossRef

  30. Q. Zhang and Z. Li, Boolean algebra of two-dimensional continua with arbitrarily complex topology, Math. Comp. 89 (2020), 2333-2364.
    MathSciNet     CrossRef

  31. S. Zlobec, Characterizing fixed points, Croat. Oper. Res. Rev. CRORR 8 (2017), 351-356.
    MathSciNet     CrossRef

  32. A.J. Zomorodian, Computing and comprehending topology persistence and hierarchical morse complexes, Ph.D. thesis, University of Illinois at Urbana-Champaign, Graduate College, 2001.

Glasnik Matematicki Home Page