Glasnik Matematicki, Vol. 56, No. 1 (2021), 163-173.

PARABOLAS IN THE ISOTROPIC PLANE

Vladimir Volenec, Ema Jurkin and Marija Šimić Horvath

Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: volenec@math.hr

Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: ema.jurkin@rgn.hr

Faculty of Architecture, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: marija.simic@arhitekt.hr


Abstract.   In this paper we study the properties of a parabola in an isotropic plane and compare the results obtained with their Euclidean analogues.

2020 Mathematics Subject Classification.   51N25

Key words and phrases.   Isotropic plane, parabola


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.56.1.10


References:

  1. C. Bergmans, Théorèmes sur la parabole, Mathesis 5 (1885), 71-72, 95-96, 175-180, 6 (1886), 169-172, 7 (1887), 136-139, 8 (1888), 63-68, 10 (1890), 116-117.

  2. J. Beban-Brkić, M. Šimić and V. Volenec, On foci and asymptotes of conics in isotropic plane, Sarajevo J. Math. 3(16) (2007), 257--266.
    MathSciNet    

  3. H. Sachs, Ebene isotrope Geometrie, Friedr. Vieweg & Sohn, Braunschweig, 1987.
    MathSciNet     CrossRef

  4. K. Strubecker, Geometrie in einer isotropen Ebene, Math. Naturwiss. Unterricht 15 (1962/63), 297-306, 343-351, 385-394.
    MathSciNet    
    MathSciNet    
    MathSciNet    

  5. M. Šimić, V. Volenec and J. Beban-Brkić, Curvature of the focal conic in the isotropic plane, Sarajevo J. Math. 6(18) (2010), 117-123.
    MathSciNet    

  6. M. Šimić Horvath, V. Volenec and J. Beban-Brkić, On parabolas related to cyclic quadrangle in isotropic plane, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 20(528) (2016), 97-107.
    MathSciNet    

  7. V. Volenec, M. Šimić Horvath and E. Jurkin, Circles of curvature at points of parabola in isotropic plane, manuscript.

Glasnik Matematicki Home Page