Glasnik Matematicki, Vol. 56, No. 1 (2021), 163-173.
PARABOLAS IN THE ISOTROPIC PLANE
Vladimir Volenec, Ema Jurkin and Marija Šimić Horvath
Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: volenec@math.hr
Faculty of
Mining, Geology and Petroleum Engineering, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: ema.jurkin@rgn.hr
Faculty of Architecture, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: marija.simic@arhitekt.hr
Abstract.
In this paper we study the properties of a parabola in an isotropic plane and compare the results obtained with their Euclidean analogues.
2020 Mathematics Subject Classification. 51N25
Key words and phrases. Isotropic plane, parabola
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.56.1.10
References:
- C. Bergmans, Théorèmes sur la parabole, Mathesis
5 (1885), 71-72, 95-96, 175-180, 6 (1886), 169-172, 7 (1887), 136-139, 8 (1888), 63-68, 10 (1890), 116-117.
- J. Beban-Brkić, M. Šimić and V. Volenec, On foci and asymptotes of conics in isotropic plane, Sarajevo J. Math.
3(16) (2007), 257--266.
MathSciNet
- H. Sachs, Ebene isotrope Geometrie, Friedr. Vieweg & Sohn, Braunschweig, 1987.
MathSciNet
CrossRef
- K. Strubecker, Geometrie in einer isotropen Ebene, Math. Naturwiss. Unterricht 15 (1962/63), 297-306, 343-351, 385-394.
MathSciNet
MathSciNet
MathSciNet
- M. Šimić, V. Volenec and J. Beban-Brkić, Curvature of the focal conic in the isotropic plane, Sarajevo J. Math.
6(18) (2010), 117-123.
MathSciNet
- M. Šimić Horvath, V. Volenec and J. Beban-Brkić, On parabolas related to cyclic quadrangle in isotropic plane, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 20(528) (2016), 97-107.
MathSciNet
- V. Volenec, M. Šimić Horvath and E. Jurkin, Circles of curvature at points of parabola in isotropic plane, manuscript.
Glasnik Matematicki Home Page