Glasnik Matematicki, Vol. 56, No. 1 (2021), 151-162.
ANGULAR RIGHT SYMMETRICITY OF BOUNDED LINEAR OPERATORS ON HILBERT SPACES
Seyed Mohammad Sadegh Nabavi Sales
Department of Mathematics and Computer Sciences,
Hakim Sabzevari University,
P.O. Box 397, Sabzevar,
Iran
e-mail: sadegh.nabavi@gmail.com & sadegh.nabavi@hsu.ac.ir
Abstract.
We introduce and characterize angular right symmetric and approximate angular right symmetric points of the algebra of all bounded linear operators defined on either real or complex Hilbert spaces.
2020 Mathematics Subject Classification. 47B49, 46C05, 46B20
Key words and phrases. Angle in normed spaces, Birkhoff-James orthogonality, right symmetric points, angular right symmetric points
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.56.1.09
References:
- Lj. Arambašić, R. Rajić, The Birkhoff-James orthogonality in Hilbert C*-modules, Linear Algebra Appl. 437 (2012), 1913-1929.
MathSciNet
CrossRef
- Lj. Arambašić, R. Rajić, On symmetry of the (strong) Birkhoff-James orthogonality in Hilbert C*-modules, Ann. Funct. Anal. 7 (2016), 17-23.
MathSciNet
CrossRef
- G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), 169-172.
MathSciNet
CrossRef
- R. Bhatia and P. Šemrl, Orthogonality of matrices and some distance problems, Linear Algebra Appl. 287 (1999), 77-86.
MathSciNet
CrossRef
- J. Chmieliński, On an ε-Birkhoff orthogonality, J. Inequal. Pure Appl. Math. 6 (2005), Art. 79, 7 pp.
MathSciNet
- J. Chmieliński and P. Wójcik, Approximate symmetry of Birkhoff orthogonality, J. Math. Anal. Appl. 461 (2018), 625-640.
MathSciNet
CrossRef
- C. R. Diminnie, E. Z. Andalafte and R. W. Freese, Angles in normed linear spaces and a characterization of real inner product spaces, Math. Nachr. 129 (1986), 197-204.
MathSciNet
CrossRef
- P. Ghosh, D. Sain and K. Paul, Orthogonality of bounded linear operators, Linear Algebra Appl. 500 (2016), 43-51.
MathSciNet
CrossRef
- P. Ghosh, D. Sain and K. Paul, Symmetry of Birkhoff-James orthogonality of bounded linear operators, Adv. Oper. Theory 2 (2017), 428-434.
MathSciNet
CrossRef
- R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292.
MathSciNet
CrossRef
- S. M. S. Nabavi Sales, On mappings which approximately preserve angles, Aequationes Math. 92 (2018), 1079-1090.
MathSciNet
CrossRef
- S. M. S. Nabavi Sales, On approximate Birkhoff-James orthogonality and approximate *-orthogonality in C*-algebras, Sahand Communications in Mathematical Analysis 13 (2019), 153-163.
- K. Paul, A. Mal, P. Wójcik, Symmetry of Birkhoff-James orthogonality of operators defined between infinite dimensional Banach spaces, Linear Algebra. Appl. 563 (2019), 142-153.
MathSciNet
CrossRef
- D. Sain, On norm attainment set of a bounded linear operator, J. Math. Anal. Appl. 457 (2018), 67-76.
MathSciNet
CrossRef
- D. Sain, Birkhoff-James orthogonality of linear operators on finite dimensional Banach spaces, J. Math. Anal. Appl. 447 (2017), 860-866.
MathSciNet
CrossRef
- T. Szostok, On a generalization of the sine function,
Glas. Mat. Ser. III 38(58) (2003), 29-44.
MathSciNet
CrossRef
- R. Tanaka and D. Sain, On symmetry of strong Birkhoff orthogonality in B(H,K)
and K(H,K), Ann. Funct. Anal. 11 (2020), 693-704.
MathSciNet
CrossRef
- A. Turnšek, On operators preserving James' orthogonality, Linear Algebra Appl. 407 (2005), 189-195.
MathSciNet
CrossRef
- A. Turnšek, A remark on orthogonality and symmetry of operators in 𝔹(𝓗), Linear Algebra Appl. 535 (2017), 141-150.
MathSciNet
CrossRef
Glasnik Matematicki Home Page