Glasnik Matematicki, Vol. 56, No. 1 (2021), 151-162.

ANGULAR RIGHT SYMMETRICITY OF BOUNDED LINEAR OPERATORS ON HILBERT SPACES

Seyed Mohammad Sadegh Nabavi Sales

Department of Mathematics and Computer Sciences, Hakim Sabzevari University, P.O. Box 397, Sabzevar, Iran
e-mail: sadegh.nabavi@gmail.com & sadegh.nabavi@hsu.ac.ir


Abstract.   We introduce and characterize angular right symmetric and approximate angular right symmetric points of the algebra of all bounded linear operators defined on either real or complex Hilbert spaces.

2020 Mathematics Subject Classification.   47B49, 46C05, 46B20

Key words and phrases.   Angle in normed spaces, Birkhoff-James orthogonality, right symmetric points, angular right symmetric points


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.56.1.09


References:

  1. Lj. Arambašić, R. Rajić, The Birkhoff-James orthogonality in Hilbert C*-modules, Linear Algebra Appl. 437 (2012), 1913-1929.
    MathSciNet     CrossRef

  2. Lj. Arambašić, R. Rajić, On symmetry of the (strong) Birkhoff-James orthogonality in Hilbert C*-modules, Ann. Funct. Anal. 7 (2016), 17-23.
    MathSciNet     CrossRef

  3. G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), 169-172.
    MathSciNet     CrossRef

  4. R. Bhatia and P. Šemrl, Orthogonality of matrices and some distance problems, Linear Algebra Appl. 287 (1999), 77-86.
    MathSciNet     CrossRef

  5. J. Chmieliński, On an ε-Birkhoff orthogonality, J. Inequal. Pure Appl. Math. 6 (2005), Art. 79, 7 pp.
    MathSciNet    

  6. J. Chmieliński and P. Wójcik, Approximate symmetry of Birkhoff orthogonality, J. Math. Anal. Appl. 461 (2018), 625-640.
    MathSciNet     CrossRef

  7. C. R. Diminnie, E. Z. Andalafte and R. W. Freese, Angles in normed linear spaces and a characterization of real inner product spaces, Math. Nachr. 129 (1986), 197-204.
    MathSciNet     CrossRef

  8. P. Ghosh, D. Sain and K. Paul, Orthogonality of bounded linear operators, Linear Algebra Appl. 500 (2016), 43-51.
    MathSciNet     CrossRef

  9. P. Ghosh, D. Sain and K. Paul, Symmetry of Birkhoff-James orthogonality of bounded linear operators, Adv. Oper. Theory 2 (2017), 428-434.
    MathSciNet     CrossRef

  10. R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292.
    MathSciNet     CrossRef

  11. S. M. S. Nabavi Sales, On mappings which approximately preserve angles, Aequationes Math. 92 (2018), 1079-1090.
    MathSciNet     CrossRef

  12. S. M. S. Nabavi Sales, On approximate Birkhoff-James orthogonality and approximate *-orthogonality in C*-algebras, Sahand Communications in Mathematical Analysis 13 (2019), 153-163.

  13. K. Paul, A. Mal, P. Wójcik, Symmetry of Birkhoff-James orthogonality of operators defined between infinite dimensional Banach spaces, Linear Algebra. Appl. 563 (2019), 142-153.
    MathSciNet     CrossRef

  14. D. Sain, On norm attainment set of a bounded linear operator, J. Math. Anal. Appl. 457 (2018), 67-76.
    MathSciNet     CrossRef

  15. D. Sain, Birkhoff-James orthogonality of linear operators on finite dimensional Banach spaces, J. Math. Anal. Appl. 447 (2017), 860-866.
    MathSciNet     CrossRef

  16. T. Szostok, On a generalization of the sine function, Glas. Mat. Ser. III 38(58) (2003), 29-44.
    MathSciNet     CrossRef

  17. R. Tanaka and D. Sain, On symmetry of strong Birkhoff orthogonality in B(H,K) and K(H,K), Ann. Funct. Anal. 11 (2020), 693-704.
    MathSciNet     CrossRef

  18. A. Turnšek, On operators preserving James' orthogonality, Linear Algebra Appl. 407 (2005), 189-195.
    MathSciNet     CrossRef

  19. A. Turnšek, A remark on orthogonality and symmetry of operators in 𝔹(𝓗), Linear Algebra Appl. 535 (2017), 141-150.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page