Glasnik Matematicki, Vol. 56, No. 1 (2021), 107-149.

UNITARY DUAL OF P-ADIC GROUP SO(7) WITH SUPPORT ON MINIMAL PARABOLIC SUBGROUP

Darija Brajković Zorić

Department of Mathematics, J.J. Strossmayer University of Osijek, 31 000 Osijek, Croatia
e-mail: dbrajkovic@mathos.hr


Abstract.   In this paper, the unitary dual of p-adic group SO(7) with support on minimal parabolic subgroup is determined. In explicit determination of the unitary dual the external approach is used, which represents the basic approach for finding the unitary dual, and consists of two main steps: a complete description of the non-unitary dual and the extraction of the classes of unitarizable representations among the obtained irreducible subquotients. We expect that our results will provide deeper insight into the structure of the unitary dual in the general case.

2020 Mathematics Subject Classification.   22E50, 22E35, 11F70

Key words and phrases.   Unitary dual, p-adic special orthogonal group, non-unitary dual


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.56.1.08


References:

  1. A.-M. Aubert, Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d'un groupe réductif p-adique, Trans. Amer. Math. Soc. 347 (1995), 2179-2189.
    MathSciNet     CrossRef

  2. A.-M. Aubert, Erratum: "Duality in the Grothendieck group of the category of finite-length smooth representations of a p-adic reductive group" [Trans. Amer. Math. Soc. 347 (1995), 2179-2189], Trans. Amer. Math. Soc. 348 (1996), 4687-4690.
    MathSciNet     CrossRef

  3. J. Bernstein and A. V. Zelevinsky, Induced representations of reductive p-adic groups. I, Ann. Sci. École. Norm. Sup. (4) 10 (1977), 441-472.
    MathSciNet     CrossRef

  4. W. T. Gan and L. Lomelí, Globalization of supercuspidal representations over function fields and applications, J. Eur. Math. Soc. (JEMS) 20 (2018), 2813-2858.
    MathSciNet     CrossRef

  5. D. Goldberg, Reducibility of induced representations for Sp(2n) and SO(n), Amer. J. Math. 116 (1994), 1101-1151.
    MathSciNet     CrossRef

  6. M. Hanzer, The unitary dual of the Hermitian quaternionic group of split rank 2, Pacific J. Math. 226 (2006), 353-388.
    MathSciNet     CrossRef

  7. M. Hanzer, The unitarizability of the Aubert dual of strongly positive square integrable representations, Israel J. Math. 169 (2009), 251-294.
    MathSciNet     CrossRef

  8. K. Konno, Induced representations of U(2,2) over a p-adic field, J. Reine Angew. Math. 540 (2001), 167-204.
    MathSciNet     CrossRef

  9. I. Matić, The unitary dual of p-adic SO(5), Proc. Amer. Math. Soc. 138 (2010), 759-767.
    MathSciNet     CrossRef

  10. I. Matić, Aubert duals of strongly positive discrete series and a class of unitarizable representations, Proc. Amer. Math. Soc. 145 (2017), 3561-3570.
    MathSciNet     CrossRef

  11. I. Matić, Composition factors of a class of induced representations of classical p-adic groups, Nagoya Math. J 227 (2017), 16-48.
    MathSciNet     CrossRef

  12. I. Matić, Aubert duals of discrete series: the first inductive step, Glas. Mat. Ser. III 54(74) (2019), 133-178.
    MathSciNet    

  13. C. Mœglin, Paquets stables des séries discrètes accessibles par endoscopie tordue; leur paramètre de Langlands, in: Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro, American Mathematical Society, Providence, 2014, 295-336.
    MathSciNet     CrossRef

  14. C. Mœglin and M. Tadić, Construction of discrete series for classical p-adic groups, J. Amer. Math. Soc. 15 (2002), 715-786.
    MathSciNet     CrossRef

  15. G. Muić, The unitary dual of p-adic G2, Duke Math. J. 90 (1997), 465-493.
    MathSciNet     CrossRef

  16. G. Muić, Composition series of generalized principal series; the case of strongly positive discrete series, Israel J. Math. 140 (2004), 157-202.
    MathSciNet     CrossRef

  17. P. J. Sally and M. Tadić, Induced representations and classifications for GSp(2,F) and Sp(2,F), Mém. Soc. Math. France (N.S.) 52 (1993), 75-133.
    MathSciNet    

  18. M. Tadić, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986), 335-382.
    MathSciNet     CrossRef

  19. M. Tadić, Structure arising from induction and Jacquet modules of representations of classical p-adic groups, J. Algebra 177 (1995), 1-33.
    MathSciNet     CrossRef

  20. M. Tadić, On reducibility and unitarizability for classical p-adic groups, some general results, Canad. J. Math. 61 (2009), 427-450.
    MathSciNet     CrossRef

  21. M. Tadić, On tempered and square integrable representations of classical p-adic groups, Sci. China Math. 56 (2013), 2273-2313.
    MathSciNet     CrossRef

  22. M. Tadić, Unitarizability in corank three for classical p-adic groups, to appear in Memoirs of the AMS, 2020.
    http://arxiv.org/abs/2006.12609.

Glasnik Matematicki Home Page