Glasnik Matematicki, Vol. 56, No. 1 (2021), 95-106.
A RESULT RELATED TO DERIVATIONS ON UNITAL SEMIPRIME RINGS
Irena Kosi-Ulbl, Nejc Širovnik and Joso Vukman
Faculty of Mechanical Engineering,
University of Maribor,
Smetanova 17, 2000 Maribor,
Slovenia
e-mail: irena.kosi@um.si
WinSystems, Global Gaming Solutions Partner
e-mail: nejc.sirovnik@gmail.com
Faculty of Natural Sciences and Mathematics,
Department of Mathematics and Computer Science,
University of Maribor,
Koroška 160, 2000 Maribor,
Slovenia
e-mail: joso.vukman@guest.um.si
Abstract.
The purpose of this paper is to prove the following result. Let
n≥3 be some fixed integer and let R be a (n+1)!2n-2-torsion free
semiprime unital ring. Suppose there exists an additive mapping
D: R→ R satisfying the relation
for all x ∈ R. In this case D is a derivation. The history of this result
goes back to a classical result of Herstein, which states that any Jordan
derivation on a 2-torsion free prime ring is a derivation.
2010 Mathematics Subject Classification. 16N60, 39B52
Key words and phrases. Prime ring, semiprime ring, derivation, Jordan
derivation
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.56.1.07
References:
- D. Alvo and R. Pellicer, Modified Pascal triangle and Pascal
surfaces, http://www.academia.edu/956605.
- K. I. Beidar, M. Brešar, M. A. Chebotar and W. S. Martindale 3rd,
On Herstein's Lie map conjectures II, J. Algebra 238 (2001), 239-264.
MathSciNet
CrossRef
- M. Brešar and J. Vukman, Jordan derivations on prime rings,
Bull. Austral. Math. Soc. 37 (1988), 321-322.
MathSciNet
CrossRef
- M. Brešar, Jordan derivations on semiprime rings, Proc. Amer.
Math. Soc. 104 (1988), 1003-1006.
MathSciNet
CrossRef
- M. Brešar, Jordan mappings of semiprime rings, J. Algebra
127 (1989), 218-228.
MathSciNet
CrossRef
- J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc.
53 (1975), 321-324.
MathSciNet
CrossRef
- B. Ebanks, Characterizing ring derivations of all orders via
functional equations: results and open problems, Aequationes Math.
89 (2015), 685-718.
MathSciNet
CrossRef
- B. Ebanks, T. Riedel and P. K. Sahoo, On the order of a
derivation, Aequationes Math. 90 (2016), 335-340.
MathSciNet
CrossRef
- B. Ebanks, Functional equations characterizing derivations: a
synthesis, Results Math. 73 (2018), No. 120, 13 pp.
MathSciNet
CrossRef
- D. Eremita, I. Kosi-Ulbl and J. Vukman, On certain equations in
rings, Bull. Austral. Math. Soc. 71 (2005), 53-60.
MathSciNet
CrossRef
- M. Fošner, N. Širovnik and J.Vukman, A result related to
Herstein theorem, Bull. Malays. Math. Sci. Soc.
39 (2016), 885-899.
MathSciNet
CrossRef
- E. Gselmann, G. Kiss and Cs. Vincze, On functional equations
characterizing derivations: methods and examples, Results Math.
73 (2018), No. 74, 27 pp.
MathSciNet
CrossRef
- I. N. Herstein, Jordan derivations of prime rings, Proc. Amer.
Math. Soc. 8 (1957), 1104-1120.
MathSciNet
CrossRef
- I. Kosi-Ulbl and J. Vukman, An equation related to centralizers
in semiprime rings, Glas. Mat. Ser. III 38(58) (2003), 253-261.
MathSciNet
CrossRef
- I. Kosi-Ulbl and J. Vukman, A note on derivations in semiprime
rings, Int. J. Math. Math. Sci. 20 (2005), 3347-3350.
MathSciNet
CrossRef
- C.-K. Liu and W.-K. Shiue, Generalized Jordan triple
(θ,φ)-derivations on semiprime rings, Taiwanese J. Math.
11 (2007), 1397-1406.
MathSciNet
CrossRef
- J. Vukman, Centralizers on semiprime rings, Comment. Math. Univ.
Carolin. 42 (2001), 237-245.
MathSciNet
- J. Vukman, Some remarks on derivations in semiprime rings and
standard operator algebras, Glas. Mat. Ser. III 46(66) (2011),
43-48.
MathSciNet
CrossRef
Glasnik Matematicki Home Page