Glasnik Matematicki, Vol. 56, No. 1 (2021), 63-78.

ON QUATERNION ALGEBRAS OVER THE COMPOSITE OF QUADRATIC NUMBER FIELDS

Vincenzo Acciaro, Diana Savin, Mohammed Taous and Abdelkader Zekhnini

Dipartimento di Economia, Università di Chieti-Pescara, Viale della Pineta, 4, 65127 Pescara, Italy
e-mail: v.acciaro@unich.it

Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Iuliu Maniu street 50, Braşov 500091, Romania
e-mail: diana.savin@unitbv.ro & dianet72@yahoo.com

Department of Mathematics, Faculty of Sciences and Technology, Moulay Ismail University, Errachidia, Morocco
e-mail: taousm@hotmail.com

Department Mathematics and Informatics, Sciences Faculty, Oujda, Mohammed First University, Nador, Morocco
e-mail: zekha1@yahoo.fr


Abstract.   Let p and q be two positive prime integers. In this paper we obtain a complete characterization of division quaternion algebras HK(p, q) over the composite K of n quadratic number fields.

2010 Mathematics Subject Classification.   11R04, 11R11, 11R21, 11R32, 11R52, 11S15, 11R37, 11R29, 11A41, 11F85

Key words and phrases.   Quaternion algebras, quadratic fields, biquadratic fields, composite of quadratic fields, ramification theory in algebraic number fields


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.56.1.05


References:

  1. V. Acciaro, D. Savin, M. Taous and A. Zekhnini, On quaternion algebras that split over specific quadratic number fields, to appear in Ital. J. Pure Appl. Math.

  2. V. Acciaro, Solvability of norm equations over cyclic number fields of prime degree, Math. Comp. 65 (1996), 1663-1674.
    MathSciNet     CrossRef

  3. M. Alsina and P. Bayer, Quaternion orders, quadratic forms and shimura curves, American Mathematical Society, Providence, 2004.
    MathSciNet     CrossRef

  4. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265.
    MathSciNet     CrossRef

  5. A. Chapman, D. J. Grynkiewicz, E. Matzri, L. H. Rowen and U. Vishne, Kummer spaces in symbol algebras of prime degree, J. Pure Appl. Algebra 220 (2016), 3363-3371.
    MathSciNet     CrossRef

  6. A. Chapman, Symbol length of p-algebras of prime exponent, J. Algebra Appl. 16 (2017), 1750136, 9 pp.
    MathSciNet     CrossRef

  7. T. Chinburg and E. Friedman, An embedding theorem for quaternion algebras, J. London Math. Soc. (2) 60 (1999), 33-44.
    MathSciNet     CrossRef

  8. C. Fieker, A. Jurk and M. Pohst, On solving relative norm equations in algebraic number fields, Math. Comp. 66 (1997), 399-410.
    MathSciNet     CrossRef

  9. U. Fincke and M. Pohst, A Procedure for Determining Algebraic Integers of Given Norm, in: Computer Algebra. EUROCAL 1983. Lecture Notes in Computer Science, vol 162, eds: J. A. van Hulzen, Springer, Berlin, Heidelberg, 1983, 194-202.
    MathSciNet     CrossRef

  10. P. Gille and T. Szamuely, Central simple algebras and Galois cohomology, Cambridge University Press, Cambridge, 2006.
    MathSciNet     CrossRef

  11. D. Goldstein and M. Schacher, Norms in central simple algebras, Pacific J. Math. 292 (2018), 373-388.
    MathSciNet     CrossRef

  12. K. Ireland and M. Rosen, A classical introduction to modern number theory, Springer, New York, 1990.
    MathSciNet     CrossRef

  13. C. U. Jensen and N. Yui, Polynomials with Dp as Galois group, J. Number Theory 15 (1982), 347-375.
    MathSciNet     CrossRef

  14. D. R. Kohel, Quaternion algebras, available at http://www.i2m.univ-amu.fr/perso/david.kohel/alg/doc/AlgQuat.pdf.

  15. T. Y. Lam, Introduction to quadratic forms over fields, American Mathematical Society, Providence, 2005.
    MathSciNet     CrossRef

  16. S. Lang, Algebra, Springer, New York, 2002.
    MathSciNet     CrossRef

  17. A. Ledet, Brauer type embedding problems, American Mathematical Society, Providence, 2005.
    MathSciNet     CrossRef

  18. B. Linowitz, Selectivity in quaternion algebras, J. Number Theory 132 (2012), 1425-1437.
    MathSciNet     CrossRef

  19. D. Marcus, Number Fields, Springer, New York-Heidelberg, 1977.
    MathSciNet    

  20. L. Rowen and D. J. Saltman, Tensor products of division algebras and fields, J. Algebra 394 (2013), 296-309.
    MathSciNet     CrossRef

  21. M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Cambridge University Press, 1989.
    MathSciNet     CrossRef

  22. D. Savin, About division quaternion algebras and division symbol algebras, Carpathian J. Math. 32 (2016), 233-240.
    MathSciNet    

  23. D. Savin, About split quaternion algebras over quadratic fields and symbol algebras of degree n, Bull. Math. Soc. Sci. Math. Roumanie 60 (2017), 307-312.
    MathSciNet    

  24. J. P. Serre, Local fields, Springer, New York, 1979.
    MathSciNet     CrossRef

  25. S. V. Vostokov, Explicit formulas for the Hilbert symbol, in: Geometry and Topology Monographs, Vol. 3: Invitation to higher local fields, eds. I. Fesenko and M. Kurihara, Geom. Topol. Publ., Coventry, 2000, 81-89.
    MathSciNet     CrossRef

  26. M. Waldschmidt, P. Moussa, J. M. Luck and C. Itzykson (eds.), From number theory to physics, Springer, Berlin, 1992.

Glasnik Matematicki Home Page