Glasnik Matematicki, Vol. 56, No. 1 (2021), 63-78.
ON QUATERNION ALGEBRAS OVER THE COMPOSITE OF QUADRATIC NUMBER FIELDS
Vincenzo Acciaro, Diana Savin, Mohammed Taous and Abdelkader Zekhnini
Dipartimento di Economia, Università di Chieti-Pescara, Viale della Pineta, 4, 65127 Pescara, Italy
e-mail: v.acciaro@unich.it
Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Iuliu Maniu street 50, Braşov 500091, Romania
e-mail: diana.savin@unitbv.ro & dianet72@yahoo.com
Department of Mathematics, Faculty of Sciences and Technology, Moulay Ismail University, Errachidia, Morocco
e-mail: taousm@hotmail.com
Department Mathematics and Informatics, Sciences Faculty, Oujda, Mohammed First University, Nador, Morocco
e-mail: zekha1@yahoo.fr
Abstract.
Let p and q be two positive prime integers. In this paper we obtain a complete characterization of division quaternion algebras HK(p, q) over the composite K of n quadratic number fields.
2010 Mathematics Subject Classification. 11R04, 11R11, 11R21, 11R32, 11R52, 11S15, 11R37, 11R29, 11A41, 11F85
Key words and phrases. Quaternion algebras, quadratic fields, biquadratic fields, composite of
quadratic fields, ramification theory in algebraic number fields
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.56.1.05
References:
-
V. Acciaro, D. Savin, M. Taous and A. Zekhnini,
On quaternion algebras that split over specific quadratic number fields,
to appear in Ital. J. Pure Appl. Math.
-
V. Acciaro, Solvability of norm equations over cyclic number fields of prime degree, Math. Comp. 65 (1996), 1663-1674.
MathSciNet
CrossRef
-
M. Alsina and P. Bayer, Quaternion orders, quadratic forms and shimura curves, American Mathematical Society, Providence, 2004.
MathSciNet
CrossRef
-
W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265.
MathSciNet
CrossRef
- A. Chapman, D. J. Grynkiewicz, E. Matzri, L. H. Rowen and U. Vishne,
Kummer spaces in symbol algebras of prime degree, J. Pure Appl. Algebra 220 (2016), 3363-3371.
MathSciNet
CrossRef
- A. Chapman, Symbol length of p-algebras of prime exponent, J. Algebra Appl. 16 (2017), 1750136, 9 pp.
MathSciNet
CrossRef
-
T. Chinburg and E. Friedman, An embedding theorem for quaternion algebras, J. London Math. Soc. (2) 60 (1999), 33-44.
MathSciNet
CrossRef
- C. Fieker, A. Jurk and M. Pohst, On solving relative norm equations in algebraic number fields, Math. Comp. 66 (1997), 399-410.
MathSciNet
CrossRef
- U. Fincke and M. Pohst, A Procedure for Determining Algebraic Integers of Given Norm, in: Computer Algebra. EUROCAL 1983. Lecture Notes in Computer Science, vol 162, eds: J. A. van Hulzen, Springer, Berlin, Heidelberg, 1983, 194-202.
MathSciNet
CrossRef
-
P. Gille and T. Szamuely, Central simple algebras and Galois
cohomology, Cambridge University Press, Cambridge, 2006.
MathSciNet
CrossRef
- D. Goldstein and M. Schacher, Norms in central simple algebras, Pacific J. Math. 292 (2018), 373-388.
MathSciNet
CrossRef
-
K. Ireland and M. Rosen, A classical introduction to modern number theory, Springer, New York, 1990.
MathSciNet
CrossRef
- C. U. Jensen and N. Yui, Polynomials with Dp as Galois group, J. Number Theory 15 (1982), 347-375.
MathSciNet
CrossRef
-
D. R. Kohel, Quaternion algebras, available at http://www.i2m.univ-amu.fr/perso/david.kohel/alg/doc/AlgQuat.pdf.
-
T. Y. Lam, Introduction to quadratic forms over fields,
American Mathematical Society, Providence, 2005.
MathSciNet
CrossRef
-
S. Lang, Algebra, Springer, New York, 2002.
MathSciNet
CrossRef
-
A. Ledet, Brauer type embedding problems, American Mathematical Society, Providence, 2005.
MathSciNet
CrossRef
-
B. Linowitz, Selectivity in quaternion algebras, J. Number Theory 132 (2012), 1425-1437.
MathSciNet
CrossRef
-
D. Marcus, Number Fields, Springer, New York-Heidelberg, 1977.
MathSciNet
- L. Rowen and D. J. Saltman, Tensor products of division algebras and fields, J. Algebra 394 (2013), 296-309.
MathSciNet
CrossRef
- M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Cambridge University Press, 1989.
MathSciNet
CrossRef
-
D. Savin, About division quaternion algebras and division symbol algebras,
Carpathian J. Math. 32 (2016), 233-240.
MathSciNet
-
D. Savin, About split quaternion algebras over quadratic fields and symbol algebras of degree n, Bull. Math. Soc. Sci. Math. Roumanie 60 (2017), 307-312.
MathSciNet
- J. P. Serre, Local fields, Springer, New York, 1979.
MathSciNet
CrossRef
-
S. V. Vostokov, Explicit formulas for the Hilbert symbol, in: Geometry and Topology Monographs, Vol. 3: Invitation to higher local fields, eds. I. Fesenko and M. Kurihara, Geom. Topol. Publ., Coventry, 2000, 81-89.
MathSciNet
CrossRef
-
M. Waldschmidt, P. Moussa, J. M. Luck and C. Itzykson (eds.), From number theory to physics, Springer, Berlin, 1992.
Glasnik Matematicki Home Page