Glasnik Matematicki, Vol. 56, No. 1 (2021), 47-61.
EXPLICIT CHARACTERIZATION OF THE TORSION GROWTH OF RATIONAL ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION OVER QUADRATIC FIELDS
Enrique González-Jiménez
Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid, Spain
e-mail: enrique.gonzalez.jimenez@uam.es
Abstract.
In a series of papers we classify the possible torsion structures of rational elliptic curves base-extended to number fields of a fixed degree. In this paper we turn our attention to the question of how the torsion of an elliptic curve with complex multiplication defined over the rationals grows over quadratic fields. We go further and we give an explicit characterization of the quadratic fields where the torsion grows in terms of some invariants attached to the curve.
2010 Mathematics Subject Classification. 11G05, 11G15
Key words and phrases. Elliptic curves, complex multiplication, torsion subgroup, rationals, quadratic fields
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.56.1.04
References:
-
W. Bosma, J. Cannon, C. Fieker, and A. Steel (eds.),
Handbook of Magma functions, Edition 2.23,
http://magma.maths.usyd.edu.au/magma, 2019.
-
A. Bourdon, P. L. Clark, amd J. Stankewicz,
Torsion points on CM elliptic curves over real number fields,
Trans. Amer. Math. Soc. 369 (2017), 8457-8496.
MathSciNet
CrossRef
-
A. Bourdon and P. Pollack,
Torsion subgroups of CM elliptic curves over odd degree number fields,
Int. Math. Res. Not. IMRN 2017 (2017), 4923-4961.
MathSciNet
CrossRef
-
M. Chou,
Torsion of rational elliptic curves over quartic Galois number fields,
J. Number Theory 160 (2016), 603-628.
MathSciNet
CrossRef
-
P. L. Clark,
Bounds for torsion on abelian varieties with integral moduli,
https://arxiv.org/abs/math/0407264v2.
-
P. L. Clark, P. Corn, A. Rice and J. Stankewicz,
Computation on elliptic curves with complex multiplication,
LMS J. Comput. Math. 17 (2014), 509-535.
MathSciNet
CrossRef
-
H. B. Daniels and E. González-Jiménez,
On the torsion of rational elliptic curves over sextic fields,
Math. Comp. 89 (2020), 411-435.
MathSciNet
CrossRef
- M. Derickx, A. Etropolski, M. van Hoeij, J. Morrow and D. Zureick-Brown,
Sporadic cubic torsion, to appear in Algebra Number Theory.
-
P. K. Dey,
Torsion groups of a family of elliptic curves over number fields,
Czechoslovak Math. J. 69(144) (2019), 161-171.
MathSciNet
CrossRef
-
L. Dieulefait, E. González-Jiménez and J. Jiménez Urroz,
On fields of definition of torsion points of elliptic curves with complex multiplication
Proc. Amer. Math. Soc. 139 (2011), 1961-1969.
MathSciNet
CrossRef
-
G. Fung, H. Ströher, H. Williams, H. Zimmer,
Torsion groups of elliptic curves with integral j-invariant over pure cubic fields,
J. Number Theory 36 (1990) 12-45.
MathSciNet
CrossRef
-
R. Fueter,
Ueber kubische diophantische Gleichungen, Comment. Math. Helv. 2 (1930), 69-89.
MathSciNet
CrossRef
-
E. González-Jiménez,
Complete classification of the torsion structures of rational elliptic curves over quintic number fields,
J. Algebra 478 (2017), 484-505.
MathSciNet
CrossRef
- E. González-Jiménez,
Magma scripts and electronic transcript of computations for the paper "Explicit characterization of the torsion growth of rational elliptic curves with complex multiplication over quadratic fields"".
http://matematicas.uam.es/ enrique.gonzalez.jimenez
-
E. González-Jiménez,
Torsion growth over cubic fields of rational elliptic curves with complex multiplication,
Publ. Math. Debrecen 97 (2020), 63-76.
MathSciNet
CrossRef
-
E. González-Jiménez,
Torsion of rational elliptic curves with complex multiplication over number fields of low degree,
in preparation.
-
E. González-Jiménez and Á. Lozano-Robledo,
On the torsion of rational elliptic curves over quartic fields,
Math. Comp. 87 (2018), 1457-1478.
MathSciNet
CrossRef
- E. González-Jiménez and F. Najman,
Growth of torsion groups of elliptic curves upon base change,
Math. Comp. 89 (2020), 1457-1485.
MathSciNet
CrossRef
- E. González-Jiménez and F. Najman,
An algorithm for determining torsion growth of elliptic curves,
to appear in Exp. Math.
-
E. González-Jiménez, F. Najman and J.M. Tornero,
Torsion of rational elliptic curves over cubic fields,
Rocky Mountain J. Math. 46 (2016), 1899-1917.
MathSciNet
CrossRef
-
E. González-Jiménez and J.M. Tornero,
Torsion of rational elliptic curves over quadratic fields,
Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 108 (2014), 923-934.
MathSciNet
CrossRef
-
E. González-Jiménez and J.M. Tornero,
Torsion of rational elliptic curves over quadratic fields II,
Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 110 (2016), 121-143.
MathSciNet
CrossRef
-
T. Gužvić,
Torsion growth of rational elliptic curves in sextic number fields,
J. Number Theory 220 (2021), 330-345.
MathSciNet
CrossRef
-
S. Kamienny,
Torsion points on elliptic curves and q-coefficients of modular forms,
Invent. Math. 109 (1992), 221-229.
MathSciNet
CrossRef
-
M. A. Kenku and F. Momose,
Torsion points on elliptic curves defined over quadratic fields,
Nagoya Math. J. 109 (1988), 125-149.
MathSciNet
CrossRef
-
B. Mazur,
Rational isogenies of prime degree,
Invent. Math.44 (1978), 129-162.
MathSciNet
CrossRef
-
L. Merel,
Bornes pour la torsion des courbes elliptiques sur les corps de nombres,
Invent. Math. 124 (1996), 437-449.
MathSciNet
CrossRef
-
H. Müller, H. Ströher and H. Zimmer,
Torsion groups of elliptic curves with integral j-invariant over quadratic fields,
J. Reine Angew. Math. 397 (1989), 100-161.
MathSciNet
-
F. Najman,
Torsion of rational elliptic curves over cubic fields and sporadic points on X1(n),
Math. Res. Lett. 23 (2016), 245-272.
MathSciNet
CrossRef
-
L. Olson,
Points of finite order on elliptic curves with complex multiplication,
Manuscripta Math. 14 (1974), 195-205.
MathSciNet
CrossRef
-
A. Pethő, T. Weis and H. Zimmer.
Torsion groups of elliptic curves with integral j-invariant over general cubic number fields,
Internat. J. Algebra Comput. 7 (1997) 353-413.
MathSciNet
CrossRef
-
J-H. Silverman,
The arithmetic of elliptic curves,
Springer-Verlag, New York, 2009.
MathSciNet
CrossRef
-
J-H. Silverman,
Advanced topics in the arithmetic of elliptic curves,
Springer-Verlag, New York, 1994.
MathSciNet
CrossRef
-
L. C. Washington,
Elliptic curves. Number theory and cryptography,
Chapman & Hall, Boca Ratón, 2008.
MathSciNet
CrossRef
Glasnik Matematicki Home Page