Glasnik Matematicki, Vol. 56, No. 1 (2021), 29-46.

K-GENERALIZED FIBONACCI NUMBERS WHICH ARE CONCATENATIONS OF TWO REPDIGITS

Adel Alahmadi, Alaa Altassan, Florian Luca and Hatoon Shoaib

Research Group in Algebraic Structures and Applications, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: analahmadi@kau.edu.sa
e-mail: aaltassan@kau.edu.sa

School of Mathematics, University of the Witwatersrand, Private Bag X3, Wits 2050, Johannesburg, South Africa,
and
Research Group in Algebraic Structures and Applications, King Abdulaziz University, Jeddah, Saudi Arabia,
and
Centro de Ciencias Matemáticas, UNAM, Morelia, Mexico
e-mail: florian.luca@wits.ac.za

Research Group in Algebraic Structures and Applications, King Abdulaziz University, Jeddah, Saudi Arabia
e-mail: hashoaib@kau.edu.sa


Abstract.   We show that the k-generalized Fibonacci numbers that are concatenations of two repdigits have at most four digits.

2010 Mathematics Subject Classification.   11A25, 11B39, 11J86

Key words and phrases.   k-Fibonacci numbers, applications of Baker's method, digits


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.56.1.03


References:

  1. A. Alahmadi, A. Altassan, F. Luca and H. Shoaib, Fibonacci numbers which are concatenations of two repdigits, Quaestiones Math. (2019), 1-10.
    MathSciNet     CrossRef

  2. S. D. Alvarado and F. Luca, Fibonacci numbers which are sums of two repdigits, Proceedings of the XIVth International Conference on Fibonacci numbers and their applications, Sociedad Matematica Mexicana, Aportaciones Matemáticas, Investigación 20 (2011), 97-108.
    MathSciNet    

  3. W. D. Banks and F. Luca, Concatenations with binary recurrent sequences, J. Integer Seq. 8 (2005), Article 05.1.13.
    MathSciNet    

  4. A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
    MathSciNet     CrossRef

  5. J. J. Bravo and F. Luca, On a conjecture about repdigits in k-generalized Fibonacci sequences, Publ. Math. Debrecen 82 (2013), 623-639.
    MathSciNet     CrossRef

  6. J. J. Bravo and F. Luca, On the largest prime factor of the k-Fibonacci numbers, Internat. J. Number Theory 9 (2013), 1351-1366.
    MathSciNet     CrossRef

  7. Y. Bugeaud, M. Maurice and S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. of Math. 163 (2006), 969-1018.
    MathSciNet     CrossRef

  8. Y. Bugeaud and M. Mignotte, On integers with identical digits, Mathematika 46 (1999), 411-417.
    MathSciNet     CrossRef

  9. M. Ddamulira and F. Luca, On the problem of Pillai with k-generalized Fibonacci numbers and powers of 3, Int. J. Number Theory 16 (2020), 1643-1666.
    MathSciNet     CrossRef

  10. G. P. Dresden and Z. Du, A simplified Binet formula for r-generalized Fibonacci numbers, J. Integer Seq. 17 (2014), Article 14.4.7.
    MathSciNet    

  11. A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
    MathSciNet     CrossRef

  12. M. R. Murty and J. Esmonde, Problems in algebraic number theory, Second edition. Graduate Texts in Mathematics 190, Springer-Verlag, New York, 2005.
    MathSciNet     CrossRef

  13. C. A. Gómez and F. Luca, On the distribution of the roots of xk-xk-1-⋯-x-1, Comment. Math. Univ. Carolinae, to appear.

  14. S. Guzmán-Sanchez and F. Luca, Linear combinations of factorials and S-units in a binary recurrence sequence, Ann. Math. Québec 38 (2014), 169-188.
    MathSciNet     CrossRef

  15. F. Luca, Fibonacci and Lucas numbers with only one distinct digit, Port. Math. 57 (2000), 243-254.
    MathSciNet    

  16. F. Luca, Repdigits as sums of three Fibonacci numbers, Math. Comm. 17 (2012), 1-11.
    MathSciNet    

  17. D. Marques and A. Togbé, On terms of linear recurrence sequences with only one distinct block of digits, Colloq. Math. 124 (2011), 145-155.
    MathSciNet     CrossRef

  18. D. Marques and A. Togbé, On repdigits as product of consecutive Fibonacci numbers, Rend. Instit. Mat. Univ. Trieste 44 (2012), 393-397.
    MathSciNet     CrossRef

  19. E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125-180. English translation in Izv. Math. 64 (2000), 1217-1269.
    MathSciNet     CrossRef

  20. R. Obláth, Une propriété des puissances parfaites, Mathesis 65 (1956), 356-364.
    MathSciNet    

Glasnik Matematicki Home Page