Glasnik Matematicki, Vol. 56, No. 1 (2021), 17-28.
SOME ARITHMETIC FUNCTIONS OF FACTORIALS IN LUCAS SEQUENCES
Eric F. Bravo and Jhon J. Bravo
Departamento de Matemáticas, Universidad del Cauca, Calle 5 No. 4-70 Popayán, Colombia
e-mail: fbravo@unicauca.edu.co
e-mail: jbravo@unicauca.edu.co
Abstract.
We prove that if {un}n≥ 0 is a nondegenerate Lucas sequence, then there are only finitely many effectively computable positive integers n such that |un|=f(m!), where f is either the sum-of-divisors function, or the sum-of-proper-divisors function, or the Euler phi function. We also give a theorem that holds for a more general class of integer sequences and illustrate our results through a few specific examples. This paper is motivated by a previous work of Iannucci and Luca who addressed the above problem with Catalan numbers and the sum-of-proper-divisors function.
2010 Mathematics Subject Classification. 11A25, 11B39
Key words and phrases. Lucas sequence, arithmetic function, Diophantine equation
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.56.1.02
References:
- A. Baker,
A sharpening of the bounds for linear forms in logarithms,
Acta Arith. 21 (1972), 117-129.
MathSciNet
CrossRef
- F. Beukers,
The multiplicity of binary recurrences,
Compos. Math. 40 (1980), 251-267.
MathSciNet
- M. T. Damir, B. Faye, F. Luca and A. Tall,
Members of Lucas sequences whose Euler function is a power of 2,
Fibonacci Quart. 52 (2014), 3-9.
MathSciNet
- L. E. Dickson, History of the Theory of Numbers. Vol. I: Divisibility and Primality, Chelsea Publishing Co., New York, 1966.
MathSciNet
CrossRef
- D. Iannucci and F. Luca,
Catalan numbers, factorials, and sums of aliquot parts,
Fibonacci Quart. 45 (2007), 327-336.
MathSciNet
- K. K. Kubota,
On a conjecture of Morgan Ward I, II,
Acta Arith. 33 (1977), 11-28, 29-48.
MathSciNet
CrossRef
MathSciNet
CrossRef
- T. Lengyel,
The order of the Fibonacci and Lucas numbers,
Fibonacci Quart. 33 (1997), 234--239.
MathSciNet
- F. Luca,
Arithmetic functions of Fibonacci numbers,
Fibonacci Quart. 37 (1999), 265-268.
MathSciNet
- F. Luca and M. Mignotte,
φ(F11)=88,
Divulg. Mat. 14 (2006), 101-106.
MathSciNet
- F. Luca and F. Nicolae,
φ(Fm)=Fn,
Integers 9 (2009), A30.
MathSciNet
- F. Luca and P. Pollack,
Multiperfect numbers with identical digits,
J. Number Theory 131 (2011), 260-284.
MathSciNet
CrossRef
- F. Luca and P. Stanica,
Equations with arithmetic functions of Pell numbers,
Bull. Math. Soc. Sci. Math. Roumanie 57(105) (2014), 409-413.
MathSciNet
- P. Lucas,
Théorie des fonctions numériques simplement périodiques,
Amer. J. Math. 1 (1878), 184-240.
MathSciNet
CrossRef
- D. Marques,
The order of appearance of product of consecutive Fibonacci numbers,
Fibonacci Quart. 50 (2012), 132-139.
MathSciNet
- M. Renault,
The period, rank, and order of the (a,b)-Fibonacci sequence Mod m,
Math. Mag. 86 (2013), 372-380.
MathSciNet
CrossRef
- P. Ribenboim, My numbers, my friends: popular lectures on number theory, Springer-Verlag, New York, 2000.
CrossRef
- J. B. Rosser and L. Schoenfeld,
Approximate formulas for some functions of prime numbers,
Illinois J. Math. 1 (1962), 64-94.
MathSciNet
CrossRef
- C. Sanna,
The p-adic valuation of Lucas sequences,
Fibonacci Quart. 54 (2016), 118-124.
MathSciNet
- A. Schinzel,
Primitive divisors of the expression An-Bn in algebraic number fields,
J. Reine Angew. Math. 268(269) (1974), 27-33.
MathSciNet
CrossRef
- A. Schinzel,
Primitive divisors of Lucas and Lehmer numbers,
in: Transcendence Theory: Advances and Applications, Academic Press Inc, London, 1977, 79-92.
MathSciNet
CrossRef
- N. J. Sloane et al.,
The on-line encyclopedia of integer sequences,
published electronically at https://oeis.org, 2021.
Glasnik Matematicki Home Page