Glasnik Matematicki, Vol. 56, No. 1 (2021), 17-28.

SOME ARITHMETIC FUNCTIONS OF FACTORIALS IN LUCAS SEQUENCES

Eric F. Bravo and Jhon J. Bravo

Departamento de Matemáticas, Universidad del Cauca, Calle 5 No. 4-70 Popayán, Colombia
e-mail: fbravo@unicauca.edu.co
e-mail: jbravo@unicauca.edu.co


Abstract.   We prove that if {un}n≥ 0 is a nondegenerate Lucas sequence, then there are only finitely many effectively computable positive integers n such that |un|=f(m!), where f is either the sum-of-divisors function, or the sum-of-proper-divisors function, or the Euler phi function. We also give a theorem that holds for a more general class of integer sequences and illustrate our results through a few specific examples. This paper is motivated by a previous work of Iannucci and Luca who addressed the above problem with Catalan numbers and the sum-of-proper-divisors function.

2010 Mathematics Subject Classification.   11A25, 11B39

Key words and phrases.   Lucas sequence, arithmetic function, Diophantine equation


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.56.1.02


References:

  1. A. Baker, A sharpening of the bounds for linear forms in logarithms, Acta Arith. 21 (1972), 117-129.
    MathSciNet     CrossRef

  2. F. Beukers, The multiplicity of binary recurrences, Compos. Math. 40 (1980), 251-267.
    MathSciNet    

  3. M. T. Damir, B. Faye, F. Luca and A. Tall, Members of Lucas sequences whose Euler function is a power of 2, Fibonacci Quart. 52 (2014), 3-9.
    MathSciNet    

  4. L. E. Dickson, History of the Theory of Numbers. Vol. I: Divisibility and Primality, Chelsea Publishing Co., New York, 1966.
    MathSciNet     CrossRef

  5. D. Iannucci and F. Luca, Catalan numbers, factorials, and sums of aliquot parts, Fibonacci Quart. 45 (2007), 327-336.
    MathSciNet    

  6. K. K. Kubota, On a conjecture of Morgan Ward I, II, Acta Arith. 33 (1977), 11-28, 29-48.
    MathSciNet     CrossRef
    MathSciNet     CrossRef

  7. T. Lengyel, The order of the Fibonacci and Lucas numbers, Fibonacci Quart. 33 (1997), 234--239.
    MathSciNet    

  8. F. Luca, Arithmetic functions of Fibonacci numbers, Fibonacci Quart. 37 (1999), 265-268.
    MathSciNet    

  9. F. Luca and M. Mignotte, φ(F11)=88, Divulg. Mat. 14 (2006), 101-106.
    MathSciNet    

  10. F. Luca and F. Nicolae, φ(Fm)=Fn, Integers 9 (2009), A30.
    MathSciNet    

  11. F. Luca and P. Pollack, Multiperfect numbers with identical digits, J. Number Theory 131 (2011), 260-284.
    MathSciNet     CrossRef

  12. F. Luca and P. Stanica, Equations with arithmetic functions of Pell numbers, Bull. Math. Soc. Sci. Math. Roumanie 57(105) (2014), 409-413.
    MathSciNet    

  13. P. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184-240.
    MathSciNet     CrossRef

  14. D. Marques, The order of appearance of product of consecutive Fibonacci numbers, Fibonacci Quart. 50 (2012), 132-139.
    MathSciNet    

  15. M. Renault, The period, rank, and order of the (a,b)-Fibonacci sequence Mod m, Math. Mag. 86 (2013), 372-380.
    MathSciNet     CrossRef

  16. P. Ribenboim, My numbers, my friends: popular lectures on number theory, Springer-Verlag, New York, 2000.
    CrossRef

  17. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 1 (1962), 64-94.
    MathSciNet     CrossRef

  18. C. Sanna, The p-adic valuation of Lucas sequences, Fibonacci Quart. 54 (2016), 118-124.
    MathSciNet    

  19. A. Schinzel, Primitive divisors of the expression An-Bn in algebraic number fields, J. Reine Angew. Math. 268(269) (1974), 27-33.
    MathSciNet     CrossRef

  20. A. Schinzel, Primitive divisors of Lucas and Lehmer numbers, in: Transcendence Theory: Advances and Applications, Academic Press Inc, London, 1977, 79-92.
    MathSciNet     CrossRef

  21. N. J. Sloane et al., The on-line encyclopedia of integer sequences, published electronically at https://oeis.org, 2021.

Glasnik Matematicki Home Page