Glasnik Matematicki, Vol. 56, No. 1 (2021), 1-15.
SYMMETRIC 1-DESIGNS FROM PGL2(Q), FOR Q AN ODD PRIME POWER
Xavier Mbaale and Bernardo Gabriel Rodrigues
School of Mathematics, Statistics and Computer Science , University of KwaZulu-Natal , Durban 4000, South Africa
e-mail: xavier@aims.ac.za
Department of Mathematics and Applied Mathematics, University of Pretoria, Hatfield 0028, South Africa
e-mail: bernardo.rodrigues@up.ac.za
Abstract.
All non-trivial point and block-primitive 1-(v, k, k) designs 𝓓 that admit the group G = PGL2(q), where q is a power of an odd prime, as a permutation group of automorphisms are determined. These self-dual and symmetric 1-designs are constructed by defining { |M|/|M ∩ Mg|: g ∈ G } to be the set of orbit lengths of the primitive action of G on the conjugates of M.
2010 Mathematics Subject Classification. 05E20, 05E30, 94B05
Key words and phrases. Symmetric designs, linear code, projective general linear group
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.56.1.01
References:
-
S. M. J. Amiri,
Maximum sum element orders of all proper subgroups of PGL2(q),
Bull. Iranian Math. Soc. 39 (2013), 501-505.
MathSciNet
-
E. F. Assmus, Jr and J. D. Key,
Designs and their codes,
Cambridge University Press, Cambridge, 1992.
MathSciNet
CrossRef
-
A. Borovik and S. Yal\cc\i nkaya,
Construction of some subgroups in black box groups PGL2(q) and PSL2(q),
arXiv:1403.2224v1, (2014).
https://arxiv.org/abs/1403.2224.
-
P. J. Cameron, G. R. Omidi and B. Tayfeh-Rezaie,
3-Designs from PGL2(q),
The Electron. J. Combin. 13 (2006), #R50, 11 pp.
-
D. Crnković and V. Mikulić,
Unitals, projective planes and other combinatorial structures constructed from the unitary groups U3(q),
q=3,4,5,7,
Ars Combin. 110 (2013), 3-13.
MathSciNet
-
D. Crnković, V. Mikulić and B. G. Rodrigues,
Designs, strongly regular graphs and codes constructed from some primitive groups,
in: Information security, coding theory and related combinatorics, IOS Press, Amsterdam,
2011, pages 231-252.
MathSciNet
-
M. R. Darafsheh,
Designs from the group PSL2(q), q even,
Des. Codes Cryptogr. 39 (2006), 311-316.
MathSciNet
CrossRef
-
L. E. Dickson,
Linear groups with an exposition of the Galois field theory,
Dover Publications, Inc., New York, 1958.
MathSciNet
-
J. D. Dixon and B. Mortimer,
Permutation groups,
Springer-Verlag New York Inc., 1996.
MathSciNet
CrossRef
-
T. Fritzsche,
The depth of subgroups of PSL2(q) II,
J. Algebra 381 (2013), 37-53.
MathSciNet
CrossRef
-
M. Giudici,
Maximal subgroups of almost simple groups with socle PSL2(q).
https://arxiv.org/abs/math/0703685.
-
J. D. Key and J. Moori,
Codes, designs and graphs from the Janko groups J1 and
J2,
J. Combin. Math. Combin. Comput. 40 (2002), 143-159.
MathSciNet
-
J. D. Key and J. Moori,
Correction to ``Codes, designs and graphs from the Janko groups
J1 and J2", J. Combin. Math. Combin. Comput. 40
(2002), 143-159,
J. Combin. Math. Combin. Comput. 64 (2008), 153.
MathSciNet
-
J. D. Key, J. Moori and B. G. Rodrigues,
Permutation decoding for the binary codes from triangular graphs,
European J. Combin. 25 (2004), 113-123.
MathSciNet
CrossRef
-
O. H. King,
The subgroup structure of finite classical groups in terms of geometric configurations,
in: Surveys in combinatorics 2005, Cambridge Univ. Press, Cambridge, 2005, 29-56.
MathSciNet
CrossRef
-
X. Mbaale and B. G. Rodrigues,
Symmetric 1-designs from PSL2(q), for q a power of an odd prime,
submitted.
-
J. Moori,
Finite groups, designs and codes,
in: Information security, coding theory and related combinatorics, IOS Press, Amsterdam,
2011, 202-230.
MathSciNet
-
J. Moori and A. Saeidi,
Some designs invariant under the Suzuki groups,
Util. Math. 109 (2018), 105-114.
MathSciNet
-
J. Moori and A. Saeidi,
Constructing some designs invariant under PSL2(q), q even,
Commun. Algebra 46 (2018), 160-166.
MathSciNet
CrossRef
-
R. A. Wilson,
The finite simple groups,
Springer-Verlag London Ltd., London, 2009.
MathSciNet
CrossRef
Glasnik Matematicki Home Page