Glasnik Matematicki, Vol. 55, No. 2 (2020), 351-366.
PARTIAL QUALITATIVE ANALYSIS OF PLANAR 𝓐Q-RICCATI EQUATIONS
Borut Zalar, Brigita Ferčec, Yilei Tang and Matej Mencinger
University of Maribor, Faculty of civil engineering,
Transportation engineering and architecture, Smetanova 17, 2000 Maribor,
Slovenia
e-mail: borut.zalar@um.si
University of Maribor,
Faculty of energy technology,
Hočevarjev trg 1, 8270 Krško, Slovenia
and
Center for applied mathematics and theoretical physics,
University of Maribor,
Mladinska 3, 2000 Maribor, Slovenia
e-mail: brigita.fercec@um.si
School of mathematical sciences,
Shanghai Jiao Tong
University,
800 Dongchuan Road, Minhang District Shanghai, 200240,
China
e-mail: mathtyl@sjtu.edu.cn
University of Maribor,
Faculty of civil engineering,
transportation engineering and architecture,
Smetanova 17, 2000 Maribor,
Slovenia
and
Institute of mathematics, physics and mechanics,
Jadranska 19, 1000 Ljubljana,
Slovenia
and
Center for applied mathematics and theoretical
physics,
University of Maribor,
Mladinska 3, 2000 Maribor,
Slovenia
e-mail: matej.mencinger@um.si
Abstract.
If we view the field of complex numbers as a 2-dimensional commutative real
algebra, we can consider the differential equation z'=az2+bz+c as
a particular case of 𝓐- Riccati equations z'=a · (z · z)+b · z+c where 𝓐=( ℝn,·) is a
commutative, possibly nonassociative algebra, a,b,c∈𝓐 and
z:I → 𝓐 is defined on some nontrivial real interval. In
the case 𝓐=ℂ, the nature of (at most two) critical points
can be described using purely algebraic conditions involving involution *
of ℂ. In the present paper we study the critical points of
𝓛(π)- Riccati equations, where 𝓛(π) is the limit
case of the so-called family of planar Lyapunov algebras, which characterize
2-dimensional homogeneous systems of quadratic ODEs with stable origin. The
number of possible critical points is 1, 3 or ∞, depending on
coefficients. The nature of critical points is also completely described.
Finally, simultaneous stability of the origin is considered for homogeneous
quadratic part corresponding to algebras 𝓛(θ).
2010 Mathematics Subject Classification. 34A34, 34C60, 17A99
Key words and phrases. Differential systems, Riccati equation, commutative
algebra, singular points, stability, center problem
Full text (PDF) (free access)
https://doi.org/10.3336/gm.55.2.11
References:
- J.C. Artés, J. Llibre, D. Schlomiuk and N. Vulpe,
Global topological configurations of singularities for the whole family
of quadratic differential systems, Qual. Theory Din. Syst. 19 (2020), no. 51, 32 pp.
MathSciNet
CrossRef
- H. Boujemaa and S. El Qotbi, On unbounded polynomial
dynamical systems, Glas. Mat. Ser. III 53(73) (2018), 343-357.
MathSciNet
CrossRef
- H. Boujemaa, S. El Qotbi and H. Rouiouih, Stability of critical points of quadratic homogeneous dynamical systems,
Glas. Mat. Ser. III 51(71) (2016), 165-173.
MathSciNet
CrossRef
- H. Boujemaa, M. Rachidi and A. Micali, On a class of
nonassociative algebras: a reduction theorem for their associated quadratic
systems, Algebras Groups Geom. 19 (2002), 73-83.
MathSciNet
- J. Chavarriga and J. Giné, Integrability of a linear
center perturbed by a fifth degree homogeneous polynomial, Publ.
Mat. 41 (1997) 335-356.
MathSciNet
CrossRef
- H. Dulac, Détermination et intégration d'une
certaine classe d'équations différentielles ayant pour point singulier
un centre, Bull. Sci. Math. (2) 32 (1908), 230-252.
- F. Dumortier, J. Llibre and J.C. Artés, Qualitative
theory of planar differential systems, Springer, Berlin, 2006.
MathSciNet
- M. Han, T. Petek and V. Romanovski. Reversibility in
polynomial systems of ODE's, Appl. Math. Comput. 338 (2018) 55-71.
MathSciNet
CrossRef
- N.C. Hopkins, Quadratic differential equations in the
complex domain I, Trans. Amer. Math. Soc. 367 (2015), 6771-6782.
MathSciNet
CrossRef
- Y. Krasnov and I. Messika, Differential and integral
equations in algebra, Funct. Differ. Equ. 21 (2014), 137-146.
MathSciNet
- Y. Krasnov, Properties of ODEs and PDEs in algebras,
Complex Anal. Oper. Theory 7 (2013), 623-634.
MathSciNet
CrossRef
- Y. Krasnov, Differential equations in algebras,
in: Hypercomplex analysis, Birkhauser Verlag, Basel, 2009, 187-205.
MathSciNet
- A. M. Liapunov, Stability of motion. With a
contribution by V. Pliss and an introduction by V. P. Basov. Translated from Russian by F. Abramovici and M. Shimshoni,
Academic Press, New York, 1966.
MathSciNet
- N.G. Lloyd and J.M. Pearson, Computing centre condition for
certain cubic systems, J. Comput. Appl. Math. 40 (1992), 323-336.
MathSciNet
CrossRef
- K.E. Malkin, Criteria for the center for a certain
differential equation, Volž. Mat. Sb. Vyp. 2 (1964), 87-91.
MathSciNet
- L. Markus, Quadratic differential equations and non-associative algebras,
in: 1960 Contributions to the theory of nonlinear oscillations, Vol. V, Princeton Univ. Press, Princeton, 1960, 185-213.
- M. Mencinger and B. Zalar, A class of nonassociative
algebras arising from quadratic ODEs, Comm. Algebra. 33 (2005), 807-828.
MathSciNet
CrossRef
- M. Mencinger, On stability of the origin in quadratic
systems of ODEs via Markus approach, Nonlinearity 16 (2003), 201-218.
MathSciNet
CrossRef
- M. Mencinger, On the stability of Riccati diferential
equation X'=TX+Q(X) in ℝn, Proc. Edinb. Math. Soc. (2) 45
(2002), 601-615.
MathSciNet
CrossRef
- M. Mencinger and B. Zalar, On stability of
critical points of quadratic differential equations in nonassociative
algebras, Glas. Mat. Ser. III 38(58) (2003), 19-27.
MathSciNet
CrossRef
- M. Mencinger and B. Zalar, Planar Lyapunov algebras,
Algebra Colloq. 27 (2020), 433-446.
MathSciNet
CrossRef
- H. Poincaré, Mémoire sur les courbes
définies par une équation différentielle. J. Math. Pures
et. Appl. (Sér. 3) 7 (1881), 375-422; (Sér. 3) 8
(1882), 251-296; (Sér. 4) 1 (1885), 167-244; (Sér. 4)
2 (1886), 151-217.
- V.G. Romanovski and D.S. Shafer, The center and
cyclicity problems: a computational algebra approach, Birkhäuser, Boston, 2009.
MathSciNet
CrossRef
- A. P. Sadovskii, Solution of the center and focus problem for
a cubic system of nonlinear oscillations, Differential Equations 33
(1997), 236-244.
MathSciNet
- A. Sagle and K. Schmitt, On second-order quadratic systems
and algebras, Differential Integral Equations 24 (2011), 877-894.
MathSciNet
- A. Sagle and K. Schmitt, Remarks on second-order quadratic
systems in algebras, Electron. J. Differential Equations (2017), no.
248, 9 pp.
MathSciNet
- F. Takens, Singularities of vector fields,
Inst. Hautes Études Sci. Publ. Math. 43 (1974), 47-100.
MathSciNet
CrossRef
- S. Walcher, Algebras and differential equations,
Hadronic Press, Inc., Palm Harbor, 1991.
MathSciNet
- Y.Q. Ye et al, Theory of limit cycles,
AMS, Providence, 1986.
MathSciNet
Glasnik Matematicki Home Page