Glasnik Matematicki, Vol. 55, No. 2 (2020), 301-336.
THE MINIMALLY DISPLACED SET OF AN IRREDUCIBLE AUTOMORPHISM IS LOCALLY FINITE
Stefano Francaviglia, Armando Martino and Dionysios Syrigos
Dipartimento di Matematica, University of Bologna, Italy
e-mail: stefano.francaviglia@unibo.it
Mathematical Sciences,
University of Southampton, United Kingdom
e-mail: A.Martino@soton.ac.uk
Mathematical Sciences,
University of Southampton, United Kingdom
e-mail: D.Syrigos@soton.ac.uk
Abstract.
We prove that the minimally displaced set of a relatively irreducible automorphism of a free
splitting, situated in a deformation space, is uniformly locally finite. The minimally displaced set coincides with the train track points for an irreducible automorphism.
We develop the theory in a general setting of deformation spaces of free products,
having in mind the study of the action of reducible automorphisms of a free group on the simplicial
bordification of Outer Space. For instance, a reducible automorphism will have invariant free factors, act on the corresponding stratum of the bordification, and in that deformation space it may be irreducible (sometimes this is referred as
relative irreducibility).
2010 Mathematics Subject Classification. 20E06, 20E36, 20E08
Key words and phrases. Relative outer space, min set, automorphims of free products of groups, irreducible automorphisms
Full text (PDF) (free access)
https://doi.org/10.3336/gm.55.2.09
References:
- H. Bass, Covering theory for graphs of groups, J. Pure Appl. Algebra 89 (1993), 3-47.
MathSciNet
CrossRef
-
M. Bestvina, A Bers-like proof of the existence of train tracks for
free group automorphisms, Fund. Math. 214 (2011), 1-12.
MathSciNet
CrossRef
-
M. Bestvina and M. Feighn, Hyperbolicity of the complex of free factors,
Adv. Math. 256 (2014), 104-155.
MathSciNet
CrossRef
-
M. Bestvina and M. Handel, Train tracks and automorphisms of
free groups, Ann. of Math. (2) 135 (1992), 1-51.
MathSciNet
CrossRef
-
M. Bestvina and P. Reynolds
The boundary of the complex of free factors, Duke Math. J.
164 (2015), 2213-2251.
MathSciNet
CrossRef
- B. Brück and R. Gupta
Homotopy type of the complex of free factors of a free group, Proc. Lond. Math. Soc. (3) 121 (2020), 1737–1765.
MathSciNet
CrossRef
-
J. Conant, M. Kassabov and K. Vogtmann,
Hairy graphs and the unstable homology of Mod(g,s), Out(Fn) and Aut(Fn),
J. Top. 6 (2013), 119-153.
MathSciNet
CrossRef
-
M. Culler and K. Vogtmann, Moduli of graphs and automorphisms of
free groups, Invent. Math. 84 (1986), 91-119.
MathSciNet
CrossRef
-
S. Francaviglia and A. Martino, Metric properties of outer
space, Publ. Mat. 55 (2011), 433-473.
MathSciNet
CrossRef
-
S. Francaviglia and A. Martino, The isometry group of outer space, Adv. Math. 231
(2012), 1940-1973.
MathSciNet
CrossRef
-
S. Francaviglia and A. Martino, Stretching factors, metrics and
train tracks for free products, Illinois J. Math. 59 (2015),
859-899.
MathSciNet
CrossRef
-
S. Francaviglia and A. Martino,
Displacements of automorphisms of free groups I:
Displacement functions, minpoints and train tracks, preprint, arXiv:1807.02781.
-
S. Francaviglia and A. Martino, Displacements of automorphisms of free groups
II: Connectedness of level sets, preprint, arXiv:1807.02782.
-
S. M. Gersten, Addendum: ``On fixed points of certain automorphisms of
free groups", Proc. London Math. Soc. (3) 49 (1984),
340-342.
MathSciNet
CrossRef
-
S. M. Gersten, On fixed points of certain automorphisms of free groups, Proc.
London Math. Soc. (3) 48 (1984), 72-90.
MathSciNet
CrossRef
-
S. M. Gersten, Fixed points of automorphisms of free groups, Adv. in Math.
64 (1987), 51-85.
MathSciNet
CrossRef
-
V. Guirardel and G. Levitt, The outer space of a free product,
Proc. Lond. Math. Soc. (3) 94 (2007), 695-714.
MathSciNet
CrossRef
-
M. Handel and L. Mosher, The free splitting complex of a free
group, I: hyperbolicity, Geom. Topol. 17 (2013),
1581-1672.
MathSciNet
CrossRef
-
M. Handel and L. Mosher, The free splitting complex of a free
group, II: Loxodromic outer automorphisms, Trans. Amer. Math. Soc. 372 (2019), 4053-4105.
MathSciNet
CrossRef
-
A. Hatcher, Homological stability for automorphism groups of free
groups, Comment. Math. Helv. 70 (1995), 39-62.
MathSciNet
CrossRef
-
A. Hilion and C. Horbez, The hyperbolicity of the sphere complex via surgery
paths, J. Reine Angew. Math. 730 (2017), 135-161.
MathSciNet
CrossRef
-
C. Horbez, Hyperbolic graphs for free products, and the Gromov boundary of the graph of cyclic splittings, J. Topol. 9 (2016), 401-450.
MathSciNet
CrossRef
-
I. Kapovich, Detecting fully irreducible automorphisms: a polynomial
time algorithm, Exp. Math. 28 (2019), 24-38.
MathSciNet
CrossRef
-
I. Kapovich, Algorithmic detectability of iwip automorphisms, Bull.
Lond. Math. Soc. 46 (2014), 279-290.
MathSciNet
CrossRef
-
I. Kapovich and K. Rafi,
On hyperbolicity of free splitting and free factor complexes,
Groups Geom. Dyn. 8 (2014), 391-414.
MathSciNet
CrossRef
-
J. E. Los, On the conjugacy problem for automorphisms of free
groups, Topology 35 (1996), 779-808, With an addendum by
the author.
MathSciNet
CrossRef
-
M. Lustig, Conjugacy and centralizers for iwip automorphisms of free
groups, Geometric group theory, Trends Math., Birkhäuser, Basel, 2007,
pp. 197-224.
MathSciNet
CrossRef
-
S. Meinert, The Lipschitz metric on deformation spaces of
G-trees, Algebr. Geom. Topol. 15 (2015), 987-1029.
MathSciNet
CrossRef
-
J.-P. Serre, Trees, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. Translated from the French original by John Stillwell, Corrected 2nd printing of
the 1980 English translation.
MathSciNet
-
J. R. Stallings, Topology of finite graphs, Invent. Math. 71
(1983), 551-565.
MathSciNet
CrossRef
Glasnik Matematicki Home Page