Glasnik Matematicki, Vol. 55, No. 2 (2020), 277-300.
PERMUTATION ORBIFOLDS OF 𝔰𝔩2 VERTEX OPERATOR ALGEBRAS
Antun Milas and Michael Penn
Department of Mathematics and Statistics, SUNY-Albany, Albany NY 12222, USA
e-mail: amilas@albany.edu
Mathematics Department, Randolph College, Lynchburg VA 24503, USA
e-mail: mpenn@randolphcollege.edu
Abstract.
We analyze two types of permutation orbifolds: (i) S2-orbifolds of the universal level k vertex operator algebra Vk(𝔰𝔩2) and of its simple quotient Lk(𝔰𝔩2), and (ii) the S3-orbifold of the level one simple vertex operator algebra L1(𝔰𝔩2). We determine their structures and discuss related W-algebras.
2010 Mathematics Subject Classification. 17B69
Key words and phrases. Permutation orbifolds, vertex algebrass
Full text (PDF) (free access)
https://doi.org/10.3336/gm.55.2.08
References:
- D. Adamović, C.H. Lam, V. Pedić and N. Yu, On irreducibility of modules of Whittaker type for cyclic orbifold vertex algebras, J. Algebra 539 (2019), 1-23.
MathSciNet
CrossRef
- T. Abe, C2-cofiniteness of 2-cyclic permutation orbifold models, Comm. Math. Phys. 317 (2013), 425-445.
MathSciNet
CrossRef
- M. Al-Ali, The ℤ2-orbifold of the universal affine vertex algebra,
J. Pure Appl. Algebra 223 (2019), 5430-5443.
MathSciNet
CrossRef
- M. Al-Ali and A. Linshaw, The ℤ 2 -orbifold of the 𝓦 3 -algebra, Comm. Math. Phys. 35 (2017), 1129-1150.
MathSciNet
CrossRef
- P. Bantay, Characters and modular properties of permutation orbifolds, Phys. Lett. B 419, 175-178.
MathSciNet
CrossRef
- K. Barron and N. Vander Werf, Permutation-twisted modules for even order cycles acting on tensor product vertex operator superalgebras, Internat. J. Math. 25 (2014), 1450018, 35 pp.
MathSciNet
CrossRef
- K. Barron, C. Dong and G. Mason, Twisted sectors for tensor product vertex operator algebras
associated to permutation groups, Comm. Math. Phys. 227 (2002), 349-384.
MathSciNet
CrossRef
- K. Barron, Y.-Z. Huang and J. Lepowsky, An equivalence of two constructions of permutation-twisted modules for lattice vertex operator algebras, J. Pure Appl. Algebra 210
(2007), 797-826.
MathSciNet
CrossRef
- A. Belin, C. Keller and A. Maloney, String universality for permutation orbifolds, Phys. Rev. D 91 (2015), 106005, 11 pp.
MathSciNet
CrossRef
- P. Bouwknegt, Extended conformal algebras from Kac-Moody algebras, In: Infinite-dimensional Lie algebras and groups, World Scientific, Teaneck, 1989, 527-555.
MathSciNet
- S. Carnahan, and M. Miyamoto, Regularity of fixed-point vertex operator subalgebras, arXiv preprint arXiv:1603.05645 (2016).
- C. Dong and G. Mason, On quantum Galois theory, Duke Math. J. 86 (1997), 305-321.
MathSciNet
CrossRef
- C. Dong and C. Jiang, A characterization of vertex operator algebra VL+, in: Conformal field theory, automorphic forms and related topics, Springer, Heidelberg, 2014, 55-74.
MathSciNet
- C. Dong, C-H. Lam, K. Tanabe, H. Yamada and K. Yokoyama. ℤ3-symmetry and W3 algebra in lattice vertex operator algebras, Pacific J. Math. 215 (2004), 245-296.
MathSciNet
CrossRef
- C. Dong, L. Ren and F. Xu, On orbifold theory, Adv. Math. 321 (2017), 1-30.
MathSciNet
CrossRef
- C. Dong, F. Xu and N. Yu, The 3-permutation orbifold of a lattice vertex operator algebra,
J. Pure Appl. Algebra 222 (2018), 1316-1336.
CrossRef
- C. Dong, F. Xu and N. Yu, 2-permutations of lattice vertex operator algebras: higher rank, J. Algebra 476 (2017), 1-25.
MathSciNet
CrossRef
- C.-H. Lam and H. Yamada, Decomposition of the lattice vertex operator algebra V√2Al, J. Algebra 272 (2004), 614-624.
MathSciNet
CrossRef
- D. Graybill, A. Linshaw, M. Penn and J. Quintero,Strong finite generation of the ℤn orbifolds of the rank 2 Heisenberg system, in preparation.
- P. Goddard, A. Kent and D. Olive, Unitary representations of the Virasoro and super-Virasoro algebras, Comm. Math. Phys. 103 (1986), 105-119.
MathSciNet
CrossRef
- H. Li, A. Milas and J. Wauchope, S2-orbifolds of N=1 and N=2 superconformal vertex algebras and W-algebras, to appear in Communications in Algebra.
- A. Linshaw, Invariant subalgebras of affine vertex algebras, Adv. Math. 234 (2013), 61-84.
MathSciNet
CrossRef
- C. Jiang and Z. Lin, The commutant of L𝔰𝔩(2)(n, 0) in the vertex operator algebra
L𝔰𝔩(2)(1,0)⊗ n, Adv. Math. 301 (2016), 227-257.
MathSciNet
CrossRef
- H. Li, Equivariant oriented cohomology and associated schemes of vertex superalgebras, PhD thesis (UAlbany), in progress.
- A. Milas, M. Penn and C. Sadowski, Permutation orbifolds of the Virasoro vertex algebra and W-algebras, to appear in Journal of Algebra;
arXiv:2005.08398.
- A. Milas, M. Penn and H. Shao, Permutation orbifolds of the Heisenberg vertex algebra 𝓗(3), J. Math. Phys. 60 (2019), 021703, 17 pp.
MathSciNet
CrossRef
- A. Milas, M. Penn and J. Wauchope, Permutation orbifolds of rank three fermionic vertex superalgebras, in: D. Adamović, P. Papi (eds.), Affine, Vertex and W-algebras, Springer, Cham, 2019, 183-202.
CrossRef
- A. Linshaw, A Hilbert theorem for vertex algebras, Transform. Groups 15 (2010), 427-448.
MathSciNet
CrossRef
- M. Penn and J. Quiento, Finite group orbifolds of Heisenberg vertex algebras, in preparation.
- J. Wauchope, Permutation orbifolds of fermionic vertex algebras, PhD thesis, UAlbany, 2020.
MathSciNet
Glasnik Matematicki Home Page